User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.1.hl.TZ0.2
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 2 Adapted from N/A

Question

Let A2 = 2A + I where A is a 2 × 2 matrix.

Show that A4 = 12A + 5I.

[3]
a.

Let B = \(\left[ {\begin{array}{*{20}{c}}
4&2 \\
1&{ - 3}
\end{array}} \right]\).

Given that B2B – 4I = \(\left[ {\begin{array}{*{20}{c}}
k&0 \\
0&k
\end{array}} \right]\), find the value of \(k\).

[3]
b.

Markscheme

METHOD 1
A4 = 4A2 + 4AI + I2 or equivalent       M1A1
= 4(2A + I) + 4A + I       A1
= 8A + 4I + 4A + I
= 12A + 5I      AG

[3 marks]

METHOD 2
A3 = A(2A + I) = 2A2 + AI = 2(2A + I) + A(= 5A + 2I)       M1A1
A4 = A(5+ 2I)       A1
= 5A2 + 2A = 5(2+ I) + 2A
= 12A + 5I       AG

[3 marks]

a.

B2 = \(\left[ {\begin{array}{*{20}{c}}
{18}&2 \\
1&{11}
\end{array}} \right]\)      (A1)

\(\left[ {\begin{array}{*{20}{c}}
{18}&2 \\
1&{11}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
4&2 \\
1&{ - 3}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
4&0 \\
0&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{10}&0 \\
0&{10}
\end{array}} \right]\)      (A1)

\( \Rightarrow k = 10\)     A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1 - Linear Algebra » 1.1 » Definition of a matrix: the terms element, row, column and order for \(m \times n\) matrices.

View options