Date | May 2014 | Marks available | 12 | Reference code | 14M.1.hl.TZ0.10 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Determine, Express, and Hence | Question number | 10 | Adapted from | N/A |
Question
The matrix A is given by A = \(\left( {\begin{array}{*{20}{c}}1&2&1\\1&1&2\\2&3&1\end{array}} \right)\).
(a) Given that A\(^3\) can be expressed in the form A\(^3 = a\)A\(^2 = b\)A \( + c\)I, determine the values of the constants \(a\), \(b\), \(c\).
(b) (i) Hence express A\(^{ - 1}\) in the form A\(^{ - 1} = d\)A\(^2 = e\)A \( + f\)I where \(d,{\text{ }}e,{\text{ }}f \in \mathbb{Q}\).
(ii) Use this result to determine A\(^{ - 1}\).
Markscheme
(a) successive powers of A are given by
A\(^2 = \) \(\left( {\begin{array}{*{20}{c}}5&7&6\\6&9&5\\7&{10}&9\end{array}} \right)\) (M1)A1
A\(^3 = \) \(\left( {\begin{array}{*{20}{c}}{24}&{35}&{25}\\{25}&{36}&{29}\\{35}&{51}&{36}\end{array}} \right)\) A1
it follows, considering elements in the first rows, that
\(5a + b + c = 24\)
\(7a + 2b = 35\)
\(6a + b = 25\) M1A1
solving, (M1)
\((a,{\text{ }}b,{\text{ }}c) = (3,{\text{ }}7,{\text{ }}2)\) A1
Note: Accept any other three correct equations.
Note: Accept the use of the Cayley–Hamilton Theorem.
[7 marks]
(b) (i) it has been shown that
A\(^3 = 3\)A\(^2 + 7\)A\( + 2\)I
multiplying by A\(^{ - 1}\), M1
A\(^2 = 3\)A\( + 7\)I\( + 2\)A\(^{ - 1}\) A1
whence
A\(^{ - 1} = 0.5\)A\(^2 - 1.5\)A \( - 3.5\)I A1
(ii) substituting powers of A,
A\(^{ - 1} = 0.5\)\(\left( {\begin{array}{*{20}{c}}5&7&6\\6&9&5\\7&{10}&9\end{array}} \right) - 1.5\left( {\begin{array}{*{20}{c}}1&2&1\\1&1&2\\2&3&1\end{array}} \right) - 3.5\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\) M1
=\(\left( {\begin{array}{*{20}{c}}{ - 2.5}&{0.5}&{1.5}\\{1.5}&{ - 0.5}&{ - 0.5}\\{0.5}&{0.5}&{ - 0.5}\end{array}} \right)\) A1
Note: Follow through their equation in (b)(i).
Note: Line (ii) of (ii) must be seen.
[5 marks]