Date | May 2014 | Marks available | 11 | Reference code | 14M.1.hl.TZ0.12 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Determine | Question number | 12 | Adapted from | N/A |
Question
Consider the infinite series \(S = \sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{{2^{2n}}\left( {2{n^2} - 1} \right)}}} \).
(a) Determine the radius of convergence.
(b) Determine the interval of convergence.
Markscheme
(a) let \({T_n}\) denote the \(n{\text{th}}\) term
consider
\(\frac{{{T_{n + 1}}}}{{{T_n}}} = \frac{{{x^{(n + 1)}}}}{{{2^{2(n + 1)}}\left( {2{{[n + 1]}^2} - 1} \right)}} \times \frac{{{2^2}\left( {2{n^2} - 1} \right)}}{{{x^n}}}\) M1
\( = \frac{x}{{{2^2}}} \times \frac{{\left( {2{n^2} - 1} \right)}}{{\left( {2{{[n + 1]}^2} - 1} \right)}}\) A1
\( \to \frac{x}{4}\) as \(n \to \infty \) A1
so the radius of convergence is \(4\) A1
[4 marks]
(b) we need to consider \(x = \pm 4\) R1
\(S(4) = \sum\limits_{n = 1}^\infty {\frac{1}{{\left( {2{n^2} - 1} \right)}}} \) A1
\(S(4) < \sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) M1
\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) is convergent; therefore by the comparison test \(S(4)\) is convergent R1
\(S( - 4) = \sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}}}{{\left( {2{n^2} - 1} \right)}}} \) A1
EITHER
this series is convergent because it is absolutely convergent R1
OR
this series is alternating and is convergent R1
THEN
the interval of convergence is therefore \(\left[ { - 4,{\text{ }}4} \right]\) A1
Note: The final A1 is independent of any of the previous marks.
[7 marks]