Date | May 2017 | Marks available | 4 | Reference code | 17M.2.hl.TZ0.7 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Determine | Question number | 7 | Adapted from | N/A |
Question
The discrete random variable \(X\) has the following probability distribution.
\({\text{P}}(X = x) = \frac{{kx}}{{{3^x}}}\), where \(x \in {\mathbb{Z}^ + }\) and \(k\) is a constant.
Write down the first three terms of the infinite series for \(G(t)\), the probability generating function for \(X\).
Determine the radius of convergence of this infinite series.
By considering \(\left( {1 - \frac{t}{3}} \right)G(t)\), show that
\[G(t) = \frac{{3kt}}{{{{(3 - t)}^2}}}.\]
Hence show that \(k = \frac{4}{3}\).
Show that \(\ln G(t) = \ln 4 + \ln t - 2\ln (3 - t)\).
By differentiating both sides of this equation, determine the values of \(G’(1)\) and \(G’’(1)\).
Hence find \({\text{Var}}(X)\).
Markscheme
\(G(t) = \frac{{kt}}{3} + \frac{{2k{t^2}}}{{{3^2}}} + \frac{{3k{t^3}}}{{{3^3}}} + \ldots \) M1A1
[??? marks]
\(\frac{{{T_{n + 1}}}}{{{T_n}}} = \frac{{(n + 1)k{t^{n + 1}}}}{{{3^{n + 1}}}} \times \frac{{{3^n}}}{{nk{t^n}}}\) M1A1
\( \to \frac{t}{3}{\text{ as }}n \to \infty \) A1
for convergence, \(\left| {\frac{t}{3}} \right| < 1\) so radius of convergence \( = 3\) A1
[??? marks]
\(G(t) = \frac{{kt}}{3} + \frac{{2k{t^2}}}{{{3^2}}} + \frac{{3k{t^3}}}{{{3^3}}} + \ldots \)
\(\frac{t}{3}G(t) = \frac{{k{t^2}}}{{{3^2}}} + \frac{{2k{t^3}}}{{{3^3}}} + \ldots \)
\(\left( {1 - \frac{t}{3}} \right)G(t) = \frac{{kt}}{3} + \frac{{k{t^2}}}{{{3^2}}} + \frac{{k{t^3}}}{{{3^3}}} + \ldots \) M1A1
\( = \frac{{\frac{{kt}}{3}}}{{\left( {1 - \frac{t}{3}} \right)}}\) A1
\(G(t) = \frac{{\frac{{kt}}{3}}}{{{{\left( {1 - \frac{t}{3}} \right)}^2}}} = \frac{{3kt}}{{{{(3 - t)}^2}}}\) AG
[??? marks]
\(G(1) = 1\) M1
so \(k = \frac{4}{3}\) AG
[??? marks]
\(\ln G(t) = \ln 4t - \ln {(3 - t)^2}\) M1
\(\ln G(t) = \ln 4 + \ln t - 2\ln (3 - t)\) AG
[??? marks]
\(\frac{{G'(1)}}{{G(1)}} = \frac{1}{t} + \frac{2}{{3 - t}}\) M1A1
putting \(t = 1\)
\(G’(1) = 2\) A1
\(\frac{{G''(t)G(t) - {{[G'(t)]}^2}}}{{{{[G(t)]}^2}}} = - \frac{1}{{{t^2}}} + \frac{2}{{{{(3 - t)}^2}}}\) M1A1
putting \(t = 1\)
\(G’’(1) - 4 = - 1 + \frac{1}{2}\)
\(G’’(1) = \frac{7}{2}\) A1
[??? marks]
\({\text{Var}}(X) = G''(1) + G'(1) - {[G'(1)]^2} = \frac{3}{2}\) A1
[??? marks]