User interface language: English | Español

Date May 2014 Marks available 6 Reference code 14M.1.hl.TZ0.3
Level HL only Paper 1 Time zone TZ0
Command term Find, Hence, Show that, and State Question number 3 Adapted from N/A

Question

The following table shows the probability distribution of the discrete random variable \(X\).


 

(a)     Show that the probability generating function of \(X\) is given by

\[G(t) = \frac{{t{{(1 + t)}^2}}}{4}.\]

(b)     Given that \(Y = {X_1} + {X_2} + {X_3} + {X_4}\), where \({X_1},{\text{ }}{X_2},{\text{ }}{X_3},{\text{ }}{X_4}\) is a random sample from the distribution of \(X\),

(i)     state the probability generating function of \(Y\);

(ii)     hence find the value of \({\text{P}}(Y = 8)\).

Markscheme

(a)     \(G(t) = \frac{1}{4}t + \frac{1}{2}{t^2} + \frac{1}{4}{t^3}\)     M1A1

\( = \frac{{t{{(1 + t)}^2}}}{4}\)     AG

[2 marks]

 

(b)     (i)     \({\text{PGF of }} Y = {\left( {G(t)} \right)^4}\left( { = {{\left( {\frac{{t{{(1 + t)}^2}}}{4}} \right)}^4}} \right)\)     A1

(ii)     \({\text{P}}(Y = 8) = {\text{coefficient of }}{t^8}\)     (M1)

\( = \frac{{^8{{\text{C}}_4}}}{{256}}\)     (A1)

\( = \frac{{35}}{{128}}   (0.273)\)     A1

 

Note: Accept \(0.27\) or answers that round to \(0.273\).

 

[4 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3 - Statistics and probability » 3.1 » Probability generating functions for discrete random variables.

View options