User interface language: English | Español

Date May 2017 Marks available 5 Reference code 17M.1.hl.TZ0.8
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 8 Adapted from N/A

Question

The normal at the point \({\text{T}}(a{t^2},{\text{ }}2at),{\text{ }}t \ne 0\), on the parabola \({y^2} = 4ax\) meets the parabola again at the point \({\text{S}}(a{s^2},{\text{ }}2as)\).

Show that \({t^2} + st + 2 = 0\).

[7]
a.

Given that \({\rm{S\hat OT}}\) is a right-angle, where O is the origin, determine the possible values of \(t\).

[5]
b.

Markscheme

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{\frac{{{\text{d}}y}}{{{\text{d}}t}}}}{{\frac{{{\text{d}}x}}{{{\text{d}}t}}}}\)     (M1)

\( = \frac{{2a}}{{2at}} = \frac{1}{t}\)     A1

the gradient of the normal \( =  - t\)     (A1)

the equation of the normal at T is \(y - 2at =  - t(x - a{t^2})\)     A1

substituting the coordinates of S,     M1

\(2as - 2at =  - t(a{s^2} - a{t^2})\)

\(2a(s - t) =  - at(s - t)(s + t)\)     A1

\(2 =  - t(s + t) =  - st - {t^2}\)     A1

\({t^2} + st + 2 = 0\)     AG

[7 marks]

a.

gradient of \({\text{OT}} = \frac{{2at}}{{a{t^2}}} = \frac{2}{t}\)     A1

gradient of \({\text{OS}} = \frac{{2as}}{{a{s^2}}} = \frac{2}{s}\)     (A1)

the condition for perpendicularity is \(\frac{2}{t} \times \frac{2}{s} =  - 1\)     M1

\({t^2} - 4 + 2 = 0\)     A1

\(t =  \pm \sqrt 2 \)     A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2 - Geometry » 2.7

View options