User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.1.hl.TZ0.3
Level HL only Paper 1 Time zone TZ0
Command term Solve Question number 3 Adapted from N/A

Question

Consider the system of equations

\[\left[ {\begin{array}{*{20}{l}} 1&2&1&3 \\ 2&1&3&1 \\ 5&1&8&0 \\ 3&3&4&4 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}} \\ {{x_2}} \\ {{x_3}} \\ {{x_4}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2 \\ 3 \\ \lambda  \\ \mu \end{array}} \right]\]

Determine the value of \(\lambda \) and the value of \(\mu \) for which the equations are consistent.

[5]
a.

For these values of \(\lambda \) and \(\mu \), solve the equations.

[3]
b.

State the rank of the matrix of coefficients, justifying your answer.

[2]
c.

Markscheme

using row operations on \(4 \times 5\) matrix,     M1

\(\left[ {\begin{array}{*{20}{c}} 1&2&1&3 \\ 0&{ - 3}&1&{ - 5} \\ 0&{ - 9}&3&{ - 15} \\ 0&{ - 3}&1&{ - 5} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ {\lambda  - 10} \\ {\mu  - 6} \end{array}} \right]\,\,\,\begin{array}{*{20}{c}} {} \\ {{\text{row}}2 - 2 \times {\text{row1}}} \\ {{\text{row}}3 - 5 \times {\text{row1}}} \\ {{\text{row}}4 - 3 \times {\text{row1}}} \end{array}\)     A2

or any alternative correct row reductions

 

Note:     Award A1 for two correct row reductions.

 

\(\lambda  = 7\)     A1

\(\mu  = 5\)     A1

[5 marks]

a.

let \({x_3} = \alpha ,{\text{ }}{x_4} = \beta \)     M1

\({x_2} = \frac{{1 + \alpha  - 5\beta }}{3}\)     A1

\({x_1} = \frac{{4 - 5\alpha  + \beta }}{3}\)     A1

 

Note:     Alternative solutions are available.

 

[3 marks]

b.

the rank is 2     A1

because the matrix has 2 independent rows or a correct comment based on the use of rref     R1

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1 - Linear Algebra » 1.4

View options