User interface language: English | Español

Date May 2015 Marks available 1 Reference code 15M.1.sl.TZ2.8
Level SL only Paper 1 Time zone TZ2
Command term Write down Question number 8 Adapted from N/A

Question

The diagram shows a triangle ABCABC. The size of angle CˆABC^AB is 5555 and the length of AMAM is 1010 m, where MM is the midpoint of ABAB. Triangle CMBCMB is isosceles with CM=MBCM=MB.

Write down the length of MBMB.

[1]
a.

Find the size of angle CˆMBC^MB.

[2]
b.

Find the length of CBCB.

[3]
c.

Markscheme

1010    (A1)(C1)

a.

AˆMC=70A^MC=70ORAˆCM=55A^CM=55     (A1)

CˆMB=110C^MB=110     (A1)     (C2)

b.

CB2=102+1022×10×10×cos110CB2=102+1022×10×10×cos110     (M1)(A1)(ft)

Notes: Award (M1) for substitution into the cosine rule formula, (A1)(ft) for correct substitution. Follow through from their answer to part (b).

 

OR

CBsin110=10sin35CBsin110=10sin35     (M1)(A1)(ft)

Notes: Award (M1) for substitution into the sine rule formula, (A1)(ft) for correct substitution. Follow through from their answer to part (b).

 

OR

AˆCB=90A^CB=90     (A1)

sin55=CB55sin55=CB55ORcos35=CB20cos35=CB20     (M1)

Note: Award (A1) for some indication that AˆCB=90A^CB=90, (M1) for correct trigonometric equation.

 

OR

Perpendicular MNMN is drawn from MM to CBCB.     (A1)

12CB10=cos3512CB10=cos35     (M1)

Note: Award (A1) for some indication of the perpendicular bisector of BCBC, (M1) for correct trigonometric equation.

 

CB=16.4 (m)(16.3830 (m))CB=16.4 (m)(16.3830 (m))     (A1)(ft)(C3)

Notes: Where a candidate uses CˆMB=90C^MB=90 and finds CB=14.1 (m)CB=14.1 (m) award, at most, (M1)(A1)(A0).

Where a candidate uses CˆMB=60C^MB=60 and finds CB=10 (m)CB=10 (m) award, at most, (M1)(A1)(A0).

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Geometry and trigonometry » 5.0 » Basic geometric concepts: point, line, plane, angle

View options