User interface language: English | Español

Date November 2016 Marks available 4 Reference code 16N.1.sl.TZ0.14
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 14 Adapted from N/A

Question

The equation of a curve is \(y = \frac{1}{2}{x^4} - \frac{3}{2}{x^2} + 7\).

The gradient of the tangent to the curve at a point P is \( - 10\).

Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).

[2]
a.

Find the coordinates of P.

[4]
b.

Markscheme

\(2{x^3} - 3x\)     (A1)(A1)     (C2)

 

Note:     Award (A1) for \(2{x^3}\), award (A1) for \( - 3x\).

Award at most (A1)(A0) if there are any extra terms.

 

[2 marks]

a.

\(2{x^3} - 3x =  - 10\)    (M1)

 

Note:     Award (M1) for equating their answer to part (a) to \( - 10\).

 

\(x =  - 2\)    (A1)(ft)

 

Note:     Follow through from part (a). Award (M0)(A0) for \( - 2\) seen without working.

 

\(y = \frac{1}{2}{( - 2)^4} - \frac{3}{2}{( - 2)^2} + 7\)    (M1)

 

Note:     Award (M1) substituting their \( - 2\) into the original function.

 

\(y = 9\)    (A1)(ft)     (C4)

 

Note:     Accept \(( - 2,{\text{ }}9)\).

 

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 7 - Introduction to differential calculus » 7.3 » Gradients of curves for given values of \(x\).
Show 52 related questions

View options