Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2013 Marks available 4 Reference code 13M.1.sl.TZ1.1
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 1 Adapted from N/A

Question

Consider the vectors \boldsymbol{a} = \left( {\begin{array}{*{20}{c}} 2\\ { - 3} \end{array}} \right) and \boldsymbol{b} = \left( {\begin{array}{*{20}{c}} 1\\ 4 \end{array}} \right) .

Let 2\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c} = 0 , where 0 is the zero vector.

(a)     Find

  (i)     2\boldsymbol{a} + \boldsymbol{b} ;

  (ii)     \left| {2\boldsymbol{a} + \boldsymbol{b}} \right| .

 

Let 2\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c} = 0 , where 0 is the zero vector.

(b)     Find \boldsymbol{c} .

[6]
.

Find

  (i)     2\boldsymbol{a} + \boldsymbol{b} ;

  (ii)     \left| {2\boldsymbol{a} + \boldsymbol{b}} \right| .

[4]
a.

Find \boldsymbol{c} .

[2]
b.

Markscheme

(a)     (i)     2\boldsymbol{a} = \left( {\begin{array}{*{20}{c}} 4\\ { - 6} \end{array}} \right)     (A1)

correct expression for 2\boldsymbol{a} + \boldsymbol{b}     A1     N2

eg \left( {\begin{array}{*{20}{c}} 5\\ { - 2} \end{array}} \right) , (5, - 2)5\boldsymbol{i} - 2\boldsymbol{j}

 

(ii)     correct substitution into length formula     (A1)

eg \sqrt {{5^2} + {2^2}}  , \sqrt {{5^2} +  - {2^2}}

\left| {2\boldsymbol{a} + \boldsymbol{b}} \right| = \sqrt {29}      A1     N2

[4 marks]

 

(b)     valid approach     (M1)

eg \boldsymbol{c} = - (2\boldsymbol{a} + \boldsymbol{b}) , 5 + x = 0 , - 2 + y = 0

\boldsymbol{c} = \left( {\begin{array}{*{20}{c}} { - 5}\\ 2 \end{array}} \right)     A1 N2

[2 marks]

.

(i)     2\boldsymbol{a} = \left( {\begin{array}{*{20}{c}} 4\\ { - 6} \end{array}} \right)     (A1)

correct expression for 2\boldsymbol{a} + \boldsymbol{b}     A1     N2

eg \left( {\begin{array}{*{20}{c}} 5\\ { - 2} \end{array}} \right) , (5, - 2)5\boldsymbol{i} - 2\boldsymbol{j}

 

(ii)     correct substitution into length formula     (A1)

eg \sqrt {{5^2} + {2^2}}  , \sqrt {{5^2} +  - {2^2}}

\left| {2\boldsymbol{a} + \boldsymbol{b}} \right| = \sqrt {29}      A1     N2

[4 marks]

 

a.

valid approach     (M1)

eg \boldsymbol{c} = - (2\boldsymbol{a} + \boldsymbol{b}) , 5 + x = 0 , - 2 + y = 0

\boldsymbol{c} = \left( {\begin{array}{*{20}{c}} { - 5}\\ 2 \end{array}} \right)     A1 N2

[2 marks]

b.

Examiners report

Most candidates comfortably applied algebraic techniques to find new vectors. However, a significant number of candidates answered part (b) as the absolute numerical value of the vector components, which suggests a misunderstanding of the modulus notation. Those who understood the notation easily made the calculation.

.

Most candidates comfortably applied algebraic techniques to find new vectors.

a.

Most candidates comfortably applied algebraic techniques to find new vectors. However, a significant number of candidates answered part (b) as the absolute numerical value of the vector components, which suggests a misunderstanding of the modulus notation. Those who understood the notation easily made the calculation.

b.

Syllabus sections

Topic 4 - Vectors » 4.1 » Algebraic and geometric approaches to the sum and difference of two vectors; the zero vector, the vector - v.

View options