Further Mathematics SL

First examinations 2006

DIPLOMA PROGRAMME

FURTHER MATHEMATICS SL

First examinations 2006

International Baccalaureate Organization

Diploma Programme Further Mathematics $S L$

International Baccalaureate Organization, Geneva, CH-1218, Switzerland

First published in September 2004
by the International Baccalaureate Organization
Peterson House, Malthouse Avenue, Cardiff Gate
Cardiff, Wales GB CF23 8GL
UNITED KINGDOM
Tel: + 442920547777
Fax: + 442920547778
Web site: www.ibo.org
© International Baccalaureate Organization 2004

The IBO is grateful for permission to reproduce and/or translate any copyright material used in this publication. Acknowledgments are included, where appropriate, and, if notified, the IBO will be pleased to rectify any errors or omissions at the earliest opportunity.

IBO merchandise and publications in its official and working languages can be purchased through the online catalogue at www.ibo.org, found by selecting Publications from the shortcuts box. General ordering queries should be directed to the sales department in Cardiff.

Tel: +44 2920547746
Fax: +44 2920547779
E-mail: sales@ibo.org

Printed in the United Kingdom by Antony Rowe Ltd, Chippenham, Wiltshire.

CONTENTS

INTRODUCTION 1
NATURE OF THE SUBJECT 3
AIMS 5
OBJECTIVES 6
SYLLABUS OUTLINE 7
SYLLABUS DETAILS 8
ASSESSMENT OUTLINE 37
ASSESSMENT DETAILS 38

INTRODUCTION

The International Baccalaureate Diploma Programme (DP) is a rigorous pre-university course of studies, leading to examinations, that meets the needs of highly motivated secondary school students between the ages of 16 and 19 years. Designed as a comprehensive two-year curriculum that allows its graduates to fulfill requirements of various national education systems, the DP model is based on the pattern of no single country but incorporates the best elements of many. The DP is available in English, French and Spanish.

The programme model is displayed in the shape of a hexagon with six academic areas surrounding the core. Subjects are studied concurrently and students are exposed to the two great traditions of learning: the humanities and the sciences.

DP students are required to select one subject from each of the six subject groups. At least three and not more than four are taken at higher level (HL), the others at standard level (SL). HL courses represent 240 teaching hours; SL courses cover 150 hours. By arranging work in this fashion, students are able to explore some subjects in depth and some more broadly over the two-year period; this is a deliberate compromise between the early specialization preferred in some national systems and the breadth found in others.

Distribution requirements ensure that the science-orientated student is challenged to learn a foreign language and that the natural linguist becomes familiar with science laboratory procedures. While overall balance is maintained, flexibility in choosing HL concentrations allows the student to pursue areas of personal interest and to meet special requirements for university entrance.

Successful DP students meet three requirements in addition to the six subjects. The interdisciplinary theory of knowledge (TOK) course is designed to develop a coherent approach to learning that transcends and unifies the academic areas and encourages appreciation of other cultural perspectives. The extended essay of some 4,000 words offers the opportunity to investigate a topic of special interest and acquaints students with the independent research and writing skills expected at university. Participation in the creativity, action, service (CAS) requirement encourages students to be involved in creative pursuits, physical activities and service projects in the local, national and international contexts.

First examinations 2006

NATURE OF THE SUBJECT

Introduction

The nature of mathematics can be summarized in a number of ways: for example, it can be seen as a well-defined body of knowledge, as an abstract system of ideas, or as a useful tool. For many people it is probably a combination of these, but there is no doubt that mathematical knowledge provides an important key to understanding the world in which we live. Mathematics can enter our lives in a number of ways: we buy produce in the market, consult a timetable, read a newspaper, time a process or estimate a length. Mathematics, for most of us, also extends into our chosen profession: artists need to learn about perspective; musicians need to appreciate the mathematical relationships within and between different rhythms; economists need to recognize trends in financial dealings; and engineers need to take account of stress patterns in physical materials. Scientists view mathematics as a language that is central to our understanding of events that occur in the natural world. Some people enjoy the challenges offered by the logical methods of mathematics and the adventure in reason that mathematical proof has to offer. Others appreciate mathematics as an aesthetic experience or even as a cornerstone of philosophy. This prevalence of mathematics in our lives provides a clear and sufficient rationale for making the study of this subject compulsory within the DP.

Summary of courses available

Because individual students have different needs, interests and abilities, there are four different courses in mathematics. These courses are designed for different types of students: those who wish to study mathematics in depth, either as a subject in its own right or to pursue their interests in areas related to mathematics; those who wish to gain a degree of understanding and competence better to understand their approach to other subjects; and those who may not as yet be aware how mathematics may be relevant to their studies and in their daily lives. Each course is designed to meet the needs of a particular group of students. Therefore, great care should be taken to select the course that is most appropriate for an individual student.
In making this selection, individual students should be advised to take account of the following types of factor.

- Their own abilities in mathematics and the type of mathematics in which they can be successful
- Their own interest in mathematics, and those particular areas of the subject that may hold the most interest for them
- Their other choices of subjects within the framework of the DP
- Their academic plans, in particular the subjects they wish to study in future
- Their choice of career

Teachers are expected to assist with the selection process and to offer advice to students about how to choose the most appropriate course from the four mathematics courses available.

Mathematical studies SL

This course is available at SL only. It caters for students with varied backgrounds and abilities. More specifically, it is designed to build confidence and encourage an appreciation of mathematics in students who do not anticipate a need for mathematics in their future studies. Students taking this course need to be already equipped with fundamental skills and a rudimentary knowledge of basic processes.

Mathematics SL

This course caters for students who already possess knowledge of basic mathematical concepts, and who are equipped with the skills needed to apply simple mathematical techniques correctly. The majority of these students will expect to need a sound mathematical background as they prepare for future studies in subjects such as chemistry, economics, psychology and business administration.

Mathematics HL

This course caters for students with a good background in mathematics who are competent in a range of analytical and technical skills. The majority of these students will be expecting to include mathematics as a major component of their university studies, either as a subject in its own right or within courses such as physics, engineering and technology. Others may take this subject because they have a strong interest in mathematics and enjoy meeting its challenges and engaging with its problems.

Further mathematics SL

This course is available at SL only. It caters for students with a good background in mathematics who have attained a high degree of competence in a range of analytical and technical skills, and who display considerable interest in the subject. Most of these students will intend to study mathematics at university, either as a subject in its own right or as a major component of a related subject. The course is designed specifically to allow students to learn about a variety of branches of mathematics in depth and also to appreciate practical applications.

Further mathematics SL-course details

This course caters for students with a good background in mathematics who have attained a high degree of competence in a range of analytical and technical skills, and who display considerable interest in the subject. Most of these students will intend to study mathematics at university, either as a subject in its own right or as a major component of a related subject. The course is designed specifically to allow students to learn about a variety of branches of mathematics in depth and also to appreciate practical applications.

The nature of the subject is such that it focuses on different branches of mathematics to encourage students to appreciate the diversity of the subject. Students should be equipped at this stage in their mathematical progress to begin to form an overview of the characteristics that are common to all mathematical thinking, independent of topic or branch.

All categories of student can register for mathematics HL only or for further mathematics SL only or for both. However, candidates registering for further mathematics SL will be presumed to know the topics in the core syllabus of mathematics HL and to have studied one of the options, irrespective of whether they have also registered for mathematics HL.
Examination questions are intended to be comparable in difficulty with those set on the four options in the mathematics HL course. The challenge for students will be to reach an equivalent level of understanding across these four topics.

AIMS

The aims of all courses in group 5 are to enable students to:

- appreciate the multicultural and historical perspectives of all group 5 courses
- enjoy the courses and develop an appreciation of the elegance, power and usefulness of the subjects
- develop logical, critical and creative thinking
- develop an understanding of the principles and nature of the subject
- employ and refine their powers of abstraction and generalization
- develop patience and persistence in problem solving
- appreciate the consequences arising from technological developments
- transfer skills to alternative situations and to future developments
- communicate clearly and confidently in a variety of contexts.

Internationalism

One of the aims of this course is to enable students to appreciate the multiplicity of cultural and historical perspectives of mathematics. This includes the international dimension of mathematics. Teachers can exploit opportunities to achieve this aim by discussing relevant issues as they arise and making reference to appropriate background information. For example, it may be appropriate to encourage students to discuss:

- differences in notation
- the lives of mathematicians set in a historical and/or social context
- the cultural context of mathematical discoveries
- the ways in which specific mathematical discoveries were made and the techniques used to make them
- how the attitudes of different societies towards specific areas of mathematics are demonstrated
- the universality of mathematics as a means of communication.

OBJECTIVES

Having followed any one of the mathematics courses in group 5, students are expected to know and use mathematical concepts and principles. In particular, students must be able to:

- read, interpret and solve a given problem using appropriate mathematical terms
- organize and present information and data in tabular, graphical and/or diagrammatic forms
- know and use appropriate notation and terminology
- formulate a mathematical argument and communicate it clearly
- select and use appropriate mathematical strategies and techniques
- demonstrate an understanding of both the significance and the reasonableness of results
- recognize patterns and structures in a variety of situations, and make generalizations
- recognize and demonstrate an understanding of the practical applications of mathematics
- use appropriate technological devices as mathematical tools
- demonstrate an understanding of and the appropriate use of mathematical modelling.

SYLLABUS OUTLINE

Further mathematics $\mathcal{S L}$

The course consists of the study of one geometry topic and the four mathematics HL option topics. Students must also be familiar with the topics listed as presumed knowledge and in the core syllabus for the mathematics HL course.

Geometry syllabus content Requirements

Students must study all the sub-topics in this topic, as listed in the syllabus details.
Topic 1-Geometry

Mathematics HL options syllabus content

Requirements

Students must study all the sub-topics in all of the following topics as listed in the syllabus details.
Students will be presumed to have studied one of the option topics as part of the mathematics HL course. Consequently, this portion of the further mathematics SL course is regarded as having a total teaching time of 120 hours, not 160 .

Topic 2—Statistics and probability 40 hrs
Topic 3—Sets, relations and groups 40 hrs
Topic 4—Series and differential equations 40 hrs
Topic 5-Discrete mathematics 40 hrs

SYLLABUS DETAILS

Format of the syllabus

The syllabus to be taught is presented as three columns.

- Content: the first column lists, under each topic, the sub-topics to be covered.
- Amplifications/inclusions: the second column contains more explicit information on specific sub-topics listed in the first column. This helps to define what is required in terms of preparing for the examination.
- Exclusions: the third column contains information about what is not required in terms of preparing for the examination.

Teaching notes linked to the syllabus content are contained in a separate publication.

Course of study

Teachers are required to teach all the sub-topics listed under the five topics.
The topics in the syllabus do not need to be taught in the order in which they appear in this guide. Teachers should therefore construct a course of study that is tailored to the needs of their students and that integrates the areas covered by the syllabus.

Time allocation

The recommended teaching time for a standard level subject is 150 hours. The time allocations given in this guide are approximate, and are intended to suggest how the hours allowed for teaching the syllabus might be allocated. However, the exact time spent on each topic depends on a number of factors, including the background knowledge and level of preparedness of each student. Teachers should therefore adjust these timings to correspond with the needs of their students.

Use of calculators

Students are expected to have access to a graphic display calculator (GDC) at all times during the course. The minimum requirements are reviewed as technology advances, and updated information will be provided to schools. It is expected that teachers and schools monitor calculator use with reference to the calculator policy. Regulations covering the types of calculator allowed are provided in the Vade Mecum.

There are specific requirements for calculators used by students studying the statistics and probability topic.

Mathematics HL , further mathematics SL information booklet

Because each student is required to have access to a clean copy of this booklet during the examination, it is recommended that teachers ensure students are familiar with the contents of this document from the beginning of the course. The booklet is provided by the IBO and is published separately.

Teacher support materials

A variety of teacher support materials relate to this guide. These materials will include specimen examination papers and markschemes and suggestions to help teachers integrate the use of GDCs into their teaching. These will be available to all schools.

External assessment guidelines

It is recommended that teachers familiarize themselves with the section on external assessment guidelines, as this contains important information about the examination papers. In particular, students need to be familiar with notation the IBO uses and the command terms, as these will be used without explanation in the examination papers.
Geometry syllabus content
Note: proof forms a common thread throughout the five topics in the further mathematics course, including the techniques of: direct proof; indirect proof; both contrapositive and proof by contradiction; and induction.

Topic I-Geometry

The aim of this section is to develop students' geometric intuition, visualization and deductive reasoning.

Details

	Content	Amplifications/inclusions	Exclusions
1.1	Triangles: medians; altitudes; angle bisectors; perpendicular bisectors of sides. Concurrency: orthocentre; incentre; circumcentre; centroid, Euler line.	Euler's circle (the nine-point circle). Proof of concurrency theorems.	
1.2	Euclid's theorem for proportional segments in a right-angled triangle. Proportional division of a line segment (internal and external); the harmonic ratio; proportional segments in right-angled triangles.	Knowledge that the proportional segments p, q satisfy the following: $\begin{aligned} & h^{2}=p q \\ & a^{2}=p c \\ & b^{2}=q c . \end{aligned}$	

Topic I-Geometry (continued)

| | Content | Amplifications/inclusions | Exclusions |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 . 3}$ | Circle geometry: | The equation of a circle. | |
| tangents; arcs, chords and secants. | | | |
| One examination papers: questions that require | | | |
| constructions with ruler and compasses will not | | | |
| be set. | | | |

Topic I-Geometry (continued)

$\mathbf{1 . 4}$	Content	Amplifications/inclusions Apollonius' circle theorem (circle of theorem; Menelaus' theorem; Ceva's theorem; Simson's (Wallace's) line; Ptolemy's theorem; angle bisector theorem. Proof of these theorems. The concept of locus.	The use of these theorems to prove further results.

Topic I-Geometry (continued)

Power of a point with respect to a circle

There are a few equivalent definitions of the power of a point with respect to a circle. Here is a summary of the equivalent definitions.

Consider a circle C with centre O and radius r and a point M in the plane of the circle.

The following expressions are equivalent and are called "the power of M with respect to the circle".

1. The scalar product $\overrightarrow{\mathrm{MA}} \cdot \overrightarrow{\mathrm{MA}^{\prime}}$ where A and A^{\prime} are diametrically opposite.
2. $\overrightarrow{M A} \cdot \overrightarrow{M B}$.
3. $d^{2}-r^{2}$, where $d=\mathrm{MO}$.
4. MT^{2} where MT is a tangent to the circle through the given point M .
5. $\left(x_{0}-h\right)^{2}+\left(y_{0}-k\right)^{2}-r^{2}$, where $\left(x_{0}, y_{0}\right)$ are the Cartesian coordinates of the point M , and (h, k) are the coordinates of the centre O of the circle.

From this definition it is clear that the power of M with respect to C is positive when the point is outside the circle, negative when it is inside the circle, and zero when it is on the circle. (The proof of the equivalence of these expressions is a good activity for students to do).

Topic I-Geometry (continued)

Geometry theorems

Teachers and students should be aware that some of the theorems mentioned in this section may be known by other names or some names of theorems may be associated with different statements in some textbooks. To avoid confusion, on examination papers, theorems that may be misinterpreted are defined below.

Euler theorem (nine-point circle theorem)

Given any triangle ABC , let H be the intersection of the three altitudes. There is a circle that passes through these nine special points:

- the midpoints $\mathrm{L}, \mathrm{M}, \mathrm{N}$ of the three sides
- the points R, S, T, where the three altitudes of the triangle meet the sides
- the midpoints $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, of [HA], [HB], [HC].

Topic I-Geometry (continued)

Apollonius' circle theorem (circle of Apollonius)

If A, B are two fixed points such that $\frac{\mathrm{PA}}{\mathrm{PB}}$ is a constant not equal to one then the locus of P is a circle. This is called the circle of Apollonius.
Included: the converse of this theorem.

Stewart's theorem

If D is any point on the base $[\mathrm{BC}]$ of a triangle ABC , dividing BC in the ratio $m: n$, then $n \mathrm{AB}^{2}+m \mathrm{AC}^{2}=(m+n) \mathrm{AD}^{2}+m \mathrm{CD}^{2}+n \mathrm{BD}^{2}$.

Apollonius' theorem (special case of Stewart's theorem, with $m=n$)

If D is the midpoint of the base $[B C]$ of a triangle $A B C$, then $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$.

Topic I-Geometry (continued)

Menelaus' theorem

If a transversal meets the sides $[\mathrm{BC}],[\mathrm{CA}],[\mathrm{AB}]$ of a triangle at $\mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively, then $\frac{\mathrm{BD}}{\mathrm{DC}} \times \frac{\mathrm{CE}}{\mathrm{EA}} \times \frac{\mathrm{AF}}{\mathrm{FB}}=-1$.

Topic I-Geometry (continued)

Simson's line (Wallace's line)

Let D be any point on the circumscribed circle of the triangle ABC . The feet of the perpendiculars from D to each line segment $[\mathrm{AB}],[\mathrm{AC}]$ and $[\mathrm{BC}]$ are collinear. The line (EFG) is called Simson's line (or Wallace's line).

Ptolemy's theorem

If a quadrilateral is cyclic, the sum of the products of the two pairs of opposite sides equals the products of the diagonals. That is, for a cyclic quadrilateral $A B C D, A B \times C D+B C \times D A=A C \times B D$.

Topic I-Geometry (continued)

Angle bisector theorem

The angle bisector of an angle of a triangle divides the side of the triangle opposite the angle into segments proportional to the sides adjacent to the angle.

If ABC is the given triangle with (AD) as the bisector of angle BAC intersecting (BC) at point D , then $\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$.

Included: the converse of this theorem.

Topic 2-Statistics and probability

Aims

The aims of this option are to allow students the opportunity to approach statistics in a practical way; to demonstrate a good level of statistical understanding; and to understand which situations apply and to interpret the given results. It is expected that GDCs will be used throughout this option and that the minimum
 normal, t and chi-squared. Students are expected to set up the problem mathematically and then read the answers from the GDC, indicating this within their written answers. Calculator-specific or brand-specific language should not be used within these explanations.

Details

	Content	Amplifications/inclusions	Exclusions
2.1	Expectation algebra. Linear transformation of a single random variable. Mean and variance of linear combinations of two independent random variables. Extension to linear combinations of n independent random variables.	$\begin{aligned} & \mathrm{E}(a X+b)=a \mathrm{E}(X)+b \\ & \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X) \end{aligned}$ $\begin{aligned} & \mathrm{E}\left(a_{1} X_{1} \pm a_{2} X_{2}\right)=a_{1} \mathrm{E}\left(X_{1}\right) \pm a_{2} \mathrm{E}\left(X_{2}\right) \\ & \operatorname{Var}\left(a_{1} X_{1} \pm a_{2} X_{2}\right)=a_{1}{ }^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}{ }^{2} \operatorname{Var}\left(X_{2}\right) \end{aligned}$	

Topic 2-Statistics and probability (continued)

	Content	Amplifications/inclusions	Exclusions
2.2	Cumulative distribution functions. Discrete distributions: uniform, Bernoulli, binomial, negative binomial, Poisson, geometric, hypergeometric. Continuous distributions: uniform, exponential, normal.	Probability mass functions, means and variances. Probability density functions, means and variances.	Formal treatment of proof of means and variances.
2.3	Distribution of the sample mean. The distribution of linear combinations of independent normal random variables. In particular $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right) \Rightarrow \bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{n}\right)$. The central limit theorem. The approximate normality of the proportion of successes in a large sample.	A linear combination of independent normally distributed random variables is also normally distributed. The extension of these results for large samples to distributions that are not normal, using the central limit theorem.	Sampling without replacement. Proof of the central limit theorem. Distributions that do not satisfy the central limit theorem.

Topic 2-Statistics and probability (continued)

	Content	Amplifications/inclusions	Exclusions
2.4	Finding confidence intervals for the mean of a population. Finding confidence intervals for the proportion of successes in a population.	Use of the normal distribution when σ is known and the t-distribution when σ is unknown (regardless of sample size). The case of paired samples (matched pairs) could be tested as an example of a single sample technique.	The difference of means and the difference of proportions.
2.5	Significance testing for a mean. Significance testing for a proportion. Null and alternative hypotheses H_{0} and H_{1}. Type I and Type II errors. Significance levels; critical region, critical values, p-values; one-tailed and two-tailed tests.	Use of the normal distribution when σ is known and the t-distribution when σ is unknown. The case of paired samples (matched pairs) could be tested as an example of a single sample technique.	The difference of means and the difference of proportions.

Topic 2-Statistics and probability (continued)

	Content	Amplifications/inclusions	Exclusions
2.6	The chi-squared distribution: degrees of freedom, v.	Awareness of the fact that $\chi_{\text {calc }}^{2}$ is a measure of the discrepancy between observed and expected values.	Test for goodness of fit for all of the above distributions; the requirement to combine classes with expected frequencies of less than 5.
The χ^{2} statistic, $\chi_{\text {calc }}^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$.	Yates' continuity correction for $v=1$.		
Contingency tables: the χ^{2} test for the test. independence of two variables.			

	Content	Amplifications/inclusions	Exclusions
3.1	Finite and infinite sets. Subsets. Operations on sets: union; intersection; complement, set difference, symmetric difference. De Morgan's laws; distributive, associative and commutative laws (for union and intersection).	Illustration of these laws using Venn diagrams.	Proofs of these laws.
3.2	Ordered pairs: the Cartesian product of two sets. Relations; equivalence relations; equivalence classes.	An equivalence relation on a set induces a partition of the set.	
3.3	Functions: injections; surjections; bijections. Composition of functions and inverse functions.	The term "codomain". Knowledge that the function composition is not a commutative operation and that if f is a bijection from set A onto set B then f^{-1} exists and is a bijection from set B onto set A.	

Topic 3-Sets, relations and groups (continued)

	Content	Amplifications/inclusions	Exclusions
3.4	Binary operations. Operation tables (Cayley tables).	A binary operation $*$ on a non-empty set S is a rule for combining any two elements $a, b \in S$ to give a unique element c. That is, in this definition, a binary operation is not necessarily closed. On examination papers: candidates may be required to test whether a given operation satisfies the closure condition. Operation tables with the Latin square property (every element appears once only in each row and each column).	
3.5	Binary operations with associative, distributive and commutative properties.	The arithmetic operations in \mathbb{R} and \mathbb{C}; matrix operations.	
3.6	The identity element e. The inverse a^{-1} of an element a. Proof that left-cancellation and right-cancellation by an element a hold, provided that a has an inverse. Proofs of the uniqueness of the identity and inverse elements.	Both the right-identity $a * e=a$ and left-identity $e * a=a$ must hold if e is an identity element. Both $a * a^{-1}=e$ and $a^{-1} * a=e$ must hold.	

Topic 3-Sets, relations and groups (continued)

	Content	Amplifications/inclusions	Exclusions
3.7	The axioms of a group $\{G, *\}$. Abelian groups.	For the set G under a given operation *: - G is closed under * - * is associative - G contains an identity element - each element in G has an inverse in G. $a * b=b * a$, for all $a, b \in G$.	
3.8	The groups: - $\mathbb{R}, \mathbb{Q}, \mathbb{Z}$ and \mathbb{C} under addition - matrices of the same order under addition - 2×2 invertible matrices under multiplication - integers under addition modulo n - groups of transformations - symmetries of an equilateral triangle, rectangle and square - invertible functions under composition of functions - permutations under composition of permutations.	The composition $T_{1} T_{2}$ denotes T_{2} followed by T_{1}. On examination papers: the form $p=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$ will be used to represent the mapping $1 \rightarrow 3,2 \rightarrow 1,3 \rightarrow 2$.	

© International Baccalaureate Organization 2004
Topic 3-Sets, relations and groups (continued)

	Content	Amplifications/inclusions	Exclusions
3.9	Finite and infinite groups. The order of a group element and the order of a group.	Latin square property of a group table.	
3.10	Cyclic groups. Proof that all cyclic groups are Abelian.	Generators.	
3.11	Subgroups, proper subgroups. Use and proof of subgroup tests. Lagrange's theorem. Use and proof of the result that the order of a finite group is divisible by the order of any element. (Corollary to Lagrange's theorem.)	Suppose G is a group and H is a non-empty subset of G. H is a subgroup of G if $a b^{-1} \in H$ whenever $a, b \in H$. Suppose G is a finite group and H is a non-empty subset of G. H is a subgroup of G if H is closed under the group operation.	On examination papers: questions requiring the proof of Lagrange's theorem will not be set.

Topic 3-Sets, relations and groups (continued)

	Content	Amplifications/inclusions	Exclusions
3.12	Isomorphism of groups.	Infinite groups as well as finite groups. Two groups $\{G, \circ\}$ and $\{H, \bullet\}$ are isomorphic if there exists a bijection $f: G \rightarrow H$ such that $f(a \circ b)=f(a) \bullet f(b)$ for all $a, b \in G$. The function $f: G \rightarrow H$ is an isomorphism.	
Proof of isomorphism properties for identities and inverses.	Identity: let e_{1} and e_{2} be the identity elements of G, H respectively, then $f\left(e_{1}\right)=e_{2}$. Inverse: $f\left(a^{-1}\right)=(f(a))^{-1}$ for all $a \in G$.		

40 hrs

	Content	Amplifications/inclusions	Exclusions
4.1	Infinite sequences of real numbers. Limit theorems as n approaches infinity. Limit of a sequence. Improper integrals of the type $\int_{a}^{\infty} f(x) \mathrm{d} x$. The integral as a limit of a sum; lower sum and upper sum.	Limit of sum, difference, product, quotient; squeeze theorem. Formal definition: the sequence $\left\{u_{n}\right\}$ converges to the limit L, if for any $\varepsilon>0$, there is a positive integer N such that $\left\|u_{n}-L\right\|<\varepsilon$, for all $n>N$.	

Aims

Details

 7Topic 4-Series and differential equations (continued)

	Content	Amplifications/inclusions	Exclusions
4.2	Convergence of infinite series. Partial fractions and telescoping series (method of differences). Tests for convergence: comparison test; limit comparison test; ratio test; integral test. The p-series, $\sum \frac{1}{n^{p}}$. Use of integrals to estimate sums of series.	The sum of a series is the limit of the sequence of its partial sums. Simple linear non-repeated denominators. Students should be aware that if $\lim _{x \rightarrow \infty} x_{n}=0$ then the series is not necessarily convergent, but if $\lim _{x \rightarrow \infty} x_{n} \neq 0$, the series diverges. $\sum \frac{1}{n^{p}}$ is convergent for $p>1$ and divergent otherwise. When $p=1$, this is the harmonic series.	
4.3	Series that converge absolutely. Series that converge conditionally. Alternating series.	Conditions for convergence. The absolute value of the truncation error is less than the next term in the series.	
4.4	Power series: radius of convergence and interval of convergence. Determination of the radius of convergence by the ratio test.		

Topic 4-Series and differential equations (continued)

	Content	Amplifications/inclusions	Exclusions
4.5	Taylor polynomials and series, including the error term.	Applications to the approximation of functions; formulae for the error term, both in terms of the value of the $(n+1)^{\text {th }}$ derivative at an intermediate point, and in terms of an integral of the $(n+1)^{\text {th }}$ derivative.	Proof of Taylor's theorem.
		Differentiation and integration of series (valid only on the interval of convergence of the initial series).	Use of products and quotients to obtain other series.
	Maclaurin series for $\mathrm{e}^{x}, \sin x, \cos x, \arctan x$, $\ln (1+x),(1+x)^{p}$. Use of substitution to obtain other series.	Intervals of convergence for these Maclaurin series. Example: $\mathrm{e}^{x^{2}}$.	
	The evaluation of limits of the form $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ using l'Hôpital's Rule and/or the Taylor series.	Cases where the derivatives of $f(x)$ and $g(x)$ vanish for $x=a$.	Proof of l'Hôpital's Rule.

Topic 4-Series and differential equations (continued)

4.6	Content	First order differential equations: geometric interpretation using slope fields;	Amplifications/inclusions
numerical solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)$ using Euler's method. $y_{n+1}=y_{n}+h \times f\left(x_{n}, y_{n}\right) ; x_{n+1}=x_{n}+h$, where h is a constant. Homogeneous differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=f\left(\frac{y}{x}\right)$ using the substitution $y=v x$.		Exclusions	
Solution of $y^{\prime}+P(x) y=Q(x)$, using the integrating factor.			

Aims

Details

	Content	Amplifications/inclusions	Exclusions
5.1	Division and Euclidean algorithms. The greatest common divisor, $\operatorname{gcd}(a, b)$, and the least common multiple, $\operatorname{lcm}(a, b)$, of integers a and b. Relatively prime numbers; prime numbers and the fundamental theorem of arithmetic.	The theorem $a \mid b$ and $a\|c \Rightarrow a\|(b x \pm c y)$ where $x, y \in \mathbb{Z}$. The division algorithm $a=b q+r, 0 \leq r<b$. The Euclidean algorithm for determining the greatest common divisor of two integers.	Proof of the fundamental theorem of arithmetic.
5.2	Representation of integers in different bases.	On examination papers: questions that go beyond base 16 are unlikely to be set.	
5.3	Linear diophantine equations $a x+b y=c$.	General solutions required and solutions subject to constraints. For example, all solutions must be positive.	
5.4	Modular arithmetic. Linear congruences. Chinese remainder theorem.		
5.5	Fermat's little theorem.	$a^{p} \equiv a(\bmod p)$ where p is prime	On examination papers: questions requiring proof of the theorem will not be set.

Topic 5-Discrete mathematics (continued)

	Content	Amplifications/inclusions	Exclusions
5.6	Graphs, vertices, edges. Adjacent vertices, adjacent edges. Simple graphs; connected graphs; complete graphs; bipartite graphs; planar graphs, trees, weighted graphs. Subgraphs; complements of graphs. Graph isomorphism.	Two vertices are adjacent if they are joined by an edge. Two edges are adjacent if they have a common vertex. Euler's relation: $v-e+f=2$; theorems for planar graphs including $e \leq 3 v-6, e \leq 2 v-4$, κ_{5} and $\kappa_{3,3}$ are not planar. Simple graphs only for isomorphism.	
5.7	Walks, trails, paths, circuits, cycles. Hamiltonian paths and cycles; Eulerian trails and circuits.	A connected graph contains a Eulerian circuit if and only if every vertex of the graph is of even degree.	Dirac's theorem for Hamiltonian cycles.
5.8	Adjacency matrix. Cost adjacency matrix.	Applications to isomorphism and of the powers of the adjacency matrix to number of walks.	
5.9	Graph algorithms: Prim's; Kruskal's; Dijkstra's.	These are examples of "greedy" algorithms.	

Topic 5-Discrete mathematics (continued)

$\mathbf{5 . 1 0}$	Content	Amplifications/inclusions	Exclusions
	"Chinese postman" problem ("route inspection").	To determine the shortest route around a weighted graph going along each edge at least once (route inspection algorithm).	Graphs with more than two vertices of odd degree.
Algorithms for determining upper and lower salesman" problem. bounds of the travelling salesman problem.	To determine the Hamiltonian cycle of least weight in a weighted complete graph.	Graphs in which the triangle inequality is not satisfied.	

Glossary of terminology for the discrete mathematics option

Introduction

Teachers and students should be aware that many different terminologies exist in graph theory and that different textbooks may employ different combinations of these. Examples of these are: vertex/node/junction/point; edge/route/arc; degree of a vertex/order; multiple edges/parallel edges; loop/self-loop.
In IBO examination questions, the terminology used will be as it appears in the syllabus. For clarity these terms are defined below.

Terminology

Graph	Consists of a set of vertices and a set of edges; an edge joins its endpoints (vertices)		
Subgraph A graph within a graph Weighted graph A graph in which each edge is allocated a number or weight Loop An edge whose endpoints are joined to the same vertex			
Multiple edges Occur if more than one edge joins the same pair of vertices			
Walk	A sequence of linked edges		A walk in which no edge appears more than once
:---			

Tree A connected graph that contains no cycles

Weighted tree
 A tree in which each edge is allocated a number or weight

Spanning tree of a graph A subgraph containing every vertex of the graph, which is also a tree

Minimum spanning tree

Complement of a graph G

Graph isomorphism between two simple graphs G and H

Planar graph
Bipartite graph
A spanning tree of a weighted graph that has the minimum total weight

A graph with the same vertices as G but which has an edge between any two vertices if and only if G does not

A one-to-one correspondence between vertices of G and H such that a pair of vertices in G is adjacent if and only if the corresponding pair in H is adjacent

A graph that can be drawn in the plane without any edge crossing another
A graph whose vertices can be divided into two sets and in which edges always join a vertex from one set to a vertex from the other set

Complete bipartite graph A bipartite graph in which every vertex in one set is joined to every vertex in the other set

Adjacency matrix of G, denoted by \boldsymbol{A}_{G} G, denoted by \boldsymbol{C}_{G}

Cost adjacency matrix of The cost adjacency matrix, \boldsymbol{C}_{G}, of a graph G with n vertices is the $n \times n$
The adjacency matrix, \boldsymbol{A}_{G}, of a graph G with n vertices, is the $n \times n$ matrix in which the entry in row i and column j is the number of edges joining the vertices i and j. Hence, the adjacency matrix will be symmetric about the diagonal.
matrix in which the entry in row i and column j is the weight of the edges joining the vertices i and j.

ASSESSMENT OUTLINE

First examinations 2006

Further mathematics SL

External assessment 3 hrs 100\%
Written papers
Paper I I hr 35\%Four to six compulsory short-response questions based on the whole syllabus.
Paper 2 2 hrs 65\%
Four to six compulsory extended-response questions based on the whole syllabus.

ASSESSMENT DETAILS

External assessment details

3 hrs

General

Paper I and paper 2

These papers are externally set and externally marked. Together they contribute 100% of the final mark. These papers are designed to allow students to demonstrate what they know and what they can do. It is not intended that equal weight will be given to each of the five topics in the syllabus on one paper. The two papers between them will provide the syllabus coverage, but not all topics are necessarily assessed in every examination session.

Calculators

For both examination papers, students must have access to a GDC. Regulations covering the types of calculators allowed are provided in the Vade Mecum.

Mathematics HL, further mathematics SL information booklet

Each student must have access to a clean copy of the information booklet during the examination. One copy of this booklet is provided by the IBO as part of the examination papers mailing.

Awarding of marks

Marks may be awarded for method, accuracy, answers and reasoning, including interpretation.
In both papers, full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations (in the form of, for example, diagrams, graphs or calculations). Where an answer is incorrect, some marks may be given for correct method, provided this is shown by written working. All students should therefore be advised to show their working.

Paper I
I hr
35\%
This paper consists of four to six compulsory short-response questions based on the whole syllabus.

Syllabus coverage

- Knowledge of all topics from the syllabus is required for this paper. However, not all topics are necessarily assessed in every examination session.
- The intention of this paper is to test students' knowledge across the breadth of the syllabus. However, it should not be assumed that the separate topics are given equal emphasis.

Question type

- A relatively small number of steps, fewer than those required for paper 2 questions, will be needed to solve paper 1 questions.
- Questions may be presented in the form of words, symbols, tables or diagrams, or combinations of these.

Mark allocation

- This paper is worth $\mathbf{6 0}$ marks, representing $\mathbf{3 5 \%}$ of the final mark.
- Questions may be unequal in terms of length and level of difficulty. Therefore, individual questions may not necessarily be worth the same number of marks. The exact number of marks allocated to each question is indicated at the start of each question.

Paper 2

2 hrs
This paper consists of four to six compulsory extended-response questions based on the whole syllabus. Students should spend up to 20 minutes in thought and reflection.

Syllabus coverage

- Knowledge of all topics from the syllabus is required for this paper. However, not all topics are necessarily assessed in every examination session.
- Individual questions may require knowledge of more than one topic from the syllabus.
- The intention of this paper is to test students' knowledge of the syllabus in depth. It should not be assumed that the separate topics will be given equal emphasis.

Question type

- Questions will require extended responses involving sustained reasoning.
- Individual questions may develop a single theme or be divided into unconnected parts.
- Questions may be presented in the form of words, symbols, diagrams or tables, or combinations of these.
- Normally, each question reflects an incline of difficulty from relatively easy tasks at the start of a question to relatively difficult tasks at the end of a question. The emphasis is on problem solving.

Mark allocation

- This paper is worth $\mathbf{1 2 0}$ marks, representing $\mathbf{6 5 \%}$ of the final mark.
- Questions may be unequal in terms of length and level of difficulty. Therefore, individual questions may not necessarily be worth the same number of marks. The exact number of marks allocated to each question is indicated at the start of each question.

Guidelines

Notation

Of the various notations in use, the IBO has chosen to adopt a system of notation based on the recommendations of the International Organization for Standardization (ISO). This notation is used in the examination papers for this course without explanation. If forms of notation other than those listed in this guide are used on a particular examination paper, they are defined within the question in which they appear.

Because students are required to recognize, though not necessarily use, IBO notation in examinations, it is recommended that teachers introduce students to this notation at the earliest opportunity. Students are not allowed access to information about this notation in the examinations.

In a small number of cases, students may need to use alternative forms of notation in their written answers. This is because not all forms of IBO notation can be directly transferred into handwritten form. For vectors in particular the IBO notation uses a bold, italic typeface that cannot adequately be transferred into handwritten form. In this case, teachers should advise candidates to use alternative forms of notation in their written work (for example, \vec{x}, \bar{x} or \underline{x}).

Students must always use correct mathematical notation, not calculator notation.

\mathbb{N}	the set of positive integers and zero, $\{0,1,2,3, \ldots\}$
\mathbb{Z}	the set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$
\mathbb{Z}^{+}	the set of positive integers, $\{1,2,3, \ldots\}$
Q	the set of rational numbers
\mathbb{Q}^{+}	the set of positive rational numbers, $\{x \mid x \in \mathbb{Q}, x>0\}$
\mathbb{R}	the set of real numbers
\mathbb{R}^{+}	the set of positive real numbers, $\{x \mid x \in \mathbb{R}, x>0\}$
\mathbb{C}	the set of complex numbers, $\{a+\mathrm{i} b \mid a, b \in \mathbb{R}\}$
1	$\sqrt{-1}$
z	a complex number
z^{*}	the complex conjugate of z
$\|z\|$	the modulus of z
$\arg z$	the argument of z
$\operatorname{Re} z$	the real part of z

$\operatorname{Im} z$	the imaginary part of z
$\left\{x_{1}, x_{2}, \ldots\right\}$	the set with elements x_{1}, x_{2}, \ldots
$n(A)$	the number of elements in the finite set A
$\{x \mid$ \}	the set of all x such that
ϵ	is an element of
\notin	is not an element of
\varnothing	the empty (null) set
U	the universal set
\cup	union
\bigcirc	intersection
\subset	is a proper subset of
\subseteq	is a subset of
A^{\prime}	the complement of the set A
$A \times B$	the Cartesian product of sets A and B (that is, $A \times B=\{(a, b) \mid a \in A, b \in B\})$
$a \mid b$	a divides b
$a^{1 / n}, \sqrt[n]{a}$	a to the power of $\frac{1}{n}, n^{\text {th }}$ root of $a($ if $a \geq 0$ then $\sqrt[n]{a} \geq 0)$
$a^{1 / 2}, \sqrt{a}$	a to the power $\frac{1}{2}$, square root of a (if $a \geq 0$ then $\sqrt{a} \geq 0$)
$\|x\|$	the modulus or absolute value of x, that is $\left\{\begin{array}{c}x \text { for } x \geq 0, x \in \mathbb{R} \\ -x \text { for } x<0, x \in \mathbb{R}\end{array}\right.$
三	identity
\approx	is approximately equal to
$>$	is greater than
\geq	is greater than or equal to
$<$	is less than
\leq	is less than or equal to

\ngtr	is not greater than
*	is not less than
$[a, b]$	the closed interval $a \leq x \leq b$
] $a, b[$	the open interval $a<x<b$
u_{n}	the $n^{\text {th }}$ term of a sequence or series
d	the common difference of an arithmetic sequence
r	the common ratio of a geometric sequence
S_{n}	the sum of the first n terms of a sequence, $u_{1}+u_{2}+\ldots+u_{n}$
S_{∞}	the sum to infinity of a sequence, $u_{1}+u_{2}+\ldots$
$\sum_{i=1}^{n} u_{i}$	$u_{1}+u_{2}+\ldots+u_{n}$
$\prod_{i=1}^{n} u_{i}$	$u_{1} \times u_{2} \times \ldots \times u_{n}$
$\binom{n}{r}$	$\frac{n!}{r!(n-r)!}$
$f: A \rightarrow B$	f is a function under which each element of set A has an image in set B
$f: x \mapsto y$	f is a function under which x is mapped to y
$f(x)$	the image of x under the function f
f^{-1}	the inverse function of the function f
$f \circ g$	the composite function of f and g
$\lim _{x \rightarrow a} f(x)$	the limit of $f(x)$ as x tends to a
$\frac{\mathrm{d} y}{\mathrm{~d} x}$	the derivative of y with respect to x
$f^{\prime}(x)$	the derivative of $f(x)$ with respect to x
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$	the second derivative of y with respect to x

$f^{\prime \prime}(x)$	the second derivative of $f(x)$ with respect to x
$\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}$	the $n^{\text {th }}$ derivative of y with respect to x
$f^{(n)}(x)$	the $n^{\text {th }}$ derivative of $f(x)$ with respect to x
$\int y \mathrm{~d} x$	the indefinite integral of y with respect to x
$\int_{a}^{b} y \mathrm{~d} x$	the definite integral of y with respect to x between the limits $x=a$ and $x=b$
e^{x}	exponential function of x
$\log _{a} x$	logarithm to the base a of x
$\ln x$	the natural logarithm of $x, \log _{\mathrm{e}} x$
sin, cos, \tan	the circular functions
$\left.\begin{array}{l} \arcsin , \arccos , \\ \arctan \end{array}\right\}$	the inverse circular functions
csc, sec, cot	the reciprocal circular functions
$\mathrm{A}(x, y)$	the point A in the plane with Cartesian coordinates x and y
[AB]	the line segment with end points A and B
AB	the length of [AB]
(AB)	the line containing points A and B
\hat{A}	the angle at A
CÂB	the angle between $[\mathrm{CA}]$ and $[\mathrm{AB}]$
$\triangle \mathrm{ABC}$	the triangle whose vertices are A, B and C
v	the vector \boldsymbol{v}
$\overrightarrow{\mathrm{AB}}$	the vector represented in magnitude and direction by the directed line segment from A to B
a	the position vector $\overrightarrow{\mathrm{OA}}$
$\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$	unit vectors in the directions of the Cartesian coordinate axes

$\|\boldsymbol{a}\|$	the magnitude of \boldsymbol{a}
$\|\overrightarrow{\mathrm{AB}}\|$	the magnitude of AB
$\boldsymbol{v} \cdot \boldsymbol{w}$	the scalar product of \boldsymbol{v} and \boldsymbol{w}
$v \times w$	the vector product of \boldsymbol{v} and \boldsymbol{w}
\boldsymbol{A}^{-1}	the inverse of the non-singular matrix \boldsymbol{A}
$\boldsymbol{A}^{\text {T }}$	the transpose of the matrix \boldsymbol{A}
$\operatorname{det} A$	the determinant of the square matrix \boldsymbol{A}
I	the identity matrix
$\mathrm{P}(A)$	probability of event A
$\mathrm{P}\left(A^{\prime}\right)$	probability of the event "not A "
$\mathrm{P}(A \mid B)$	probability of the event A given B
x_{1}, x_{2}, \ldots	observations
f_{1}, f_{2}, \ldots	frequencies with which the observations x_{1}, x_{2}, \ldots occur
P_{x}	probability distribution function $\mathrm{P}(X=x)$ of the discrete random variable X
$f(x)$	probability density function of the continuous random variable X
$F(x)$	cumulative distribution function of the continuous random variable X
$\mathrm{E}(X)$	the expected value of the random variable X
$\operatorname{Var}(X)$	the variance of the random variable X
μ	population mean
σ^{2}	population variance, $\sigma^{2}=\frac{\sum_{i=1}^{k} f_{i}\left(x_{i}-\mu\right)^{2}}{n}$, where $n=\sum_{i=1}^{k} f_{i}$
σ	population standard deviation
\bar{x}	sample mean

s_{n}^{2}	sample variance, $s_{n}^{2}=\frac{\sum_{i=1}^{k} f_{i}\left(x_{i}-\bar{x}\right)^{2}}{n}$, where $n=\sum_{i=1}^{k} f_{i}$
s_{n}	standard deviation of the sample
s_{n-1}^{2}	unbiased estimate of the population variance, $s_{n-1}^{2}=\frac{n}{n-1} s_{n}^{2}=\frac{\sum_{i=1}^{k} f_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$, where $n=\sum_{i=1}^{k} f_{i}$
$\mathrm{B}(n, p)$	binomial distribution with parameters n and p
$\mathrm{Po}(m)$	Poisson distribution with mean m
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	normal distribution with mean μ and variance σ^{2}
$X \sim \mathrm{~B}(n, p)$	the random variable X has a binomial distribution with parameters n and p
$X \sim \operatorname{Po}(m)$	the random variable X has a Poisson distribution with mean m
$X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$	the random variable X has a normal distribution with mean μ and variance σ^{2}
Φ	cumulative distribution function of the standardized normal variable with distribution $\mathrm{N}(0,1)$
v	number of degrees of freedom
χ^{2}	chi-squared distribution
$\chi_{\text {calc }}^{2}$	the chi-squared test statistic, where $\chi_{\text {calc }}^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$
$A \backslash B$	the difference of the sets A and B (that is, $A \backslash B=A \cap B^{\prime}=\{x \mid x \in A$ and $x \notin B\}$)
$A \Delta B$	the symmetric difference of the sets A and B (that is, $A \Delta B=(A \backslash B) \cup(B \backslash A)$)
κ_{n}	a complete graph with n vertices
$\kappa_{n, m}$	a complete bipartite graph with one set of n vertices and another set of m vertices
\mathbb{Z}_{p}	the set of equivalence classes $\{0,1,2, \ldots, p-1\}$ of integers modulo p

$\operatorname{gcd}(a, b)$	the greatest common divisor of integers a and b
$\operatorname{lcm}(a, b)$	the least common multiple of integers a and b
\boldsymbol{A}_{G}	the adjacency matrix of graph G
\boldsymbol{C}_{G}	the cost adjacency matrix of graph G

Glossary of command terms

The following command terms are used without explanation on examination papers. Teachers should familiarize themselves and their students with the terms and their meanings. This list is not exhaustive. Other command terms may be used, but it should be assumed that they have their usual meaning (for example, "explain" and "estimate"). The terms included here are those that sometimes have a meaning in mathematics that is different from the usual meaning.

Further clarification and examples can be found in the teacher support material.

Write down Obtain the answer(s), usually by extracting information. Little or no calculation is

 required. Working does not need to be shown.Calculate Obtain the answer(s) showing all relevant working. "Find" and "determine" can also be used.

Find Obtain the answer(s) showing all relevant working. "Calculate" and "determine" can also be used.

Determine Obtain the answer(s) showing all relevant working. "Find" and "calculate" can also be used.

Differentiate

Obtain the derivative of a function.
Integrate Obtain the integral of a function.
Solve Obtain the solution(s) or $\operatorname{root}(s)$ of an equation.
Draw \quad Represent by means of a labelled, accurate diagram or graph, using a pencil. A ruler (straight edge) should be used for straight lines. Diagrams should be drawn to scale. Graphs should have points correctly plotted (if appropriate) and joined in a straight line or smooth curve.

Sketch Represent by means of a diagram or graph, labelled if required. A sketch should give a general idea of the required shape of the diagram or graph. A sketch of a graph should include relevant features such as intercepts, maxima, minima, points of inflexion and asymptotes.

Plot Mark the position of points on a diagram.
Compare Describe the similarities and differences between two or more items.
Deduce \quad Show a result using known information.
Justify Give a valid reason for an answer or conclusion.
Prove Use a sequence of logical steps to obtain the required result in a formal way.
Show that Obtain the required result (possibly using information given) without the formality of proof. "Show that" questions should not generally be "analysed" using a calculator.

Hence Use the preceding work to obtain the required result.
Hence or It is suggested that the preceding work is used, but other methods could also receive otherwise credit.

Weighting of objectives

Some objectives can be linked more easily to the different types of assessment. In particular, some will be assessed more appropriately in the internal assessment (as indicated in the following section) and only minimally in the examination papers. It is assumed that all further mathematics students are also doing mathematics HL, and will have produced a portfolio for the internal assessment component. The weightings are therefore unchanged for further mathematics SL, even though further mathematics SL students are not required to produce a portfolio.

Objective	Percentage weighting
Know and use mathematical concepts and principles.	15%
Read, interpret and solve a given problem using appropriate mathematical terms.	15%
Organize and present information and data in tabular, graphical and/or diagrammatic forms.	12%
Know and use appropriate notation and terminology (internal assessment).	5%
Formulate a mathematical argument and communicate it clearly.	10%
Select and use appropriate mathematical strategies and techniques.	15%
Demonstrate an understanding of both the significance and the reasonableness of results (internal assessment).	5%
Recognize patterns and structures in a variety of situations, and make generalizations (internal assessment).	3%
Recognize and demonstrate an understanding of the practical applications of mathematics (internal assessment).	3%
Use appropriate technological devices as mathematical tools (internal assessment).	15%
Demonstrate an understanding of and the appropriate use of mathematical modelling (internal assessment).	2%

