ENERGETICS AHL (HL only) Please ensure that you have also completed the Core (SL & HL) questions 1. The standard enthalpy of combustion, ΔH_c^{\bullet} of phenol is -3050kJ mol $^{-1}$. $C_6H_5OH(s) + 7O_2(g) \rightarrow 6CO_2(g) + 3H_2O(l)$ | (a) Using section 12 of the data booklet, calculate the standard enthalpy of formation, ΔH^{e_f} , of phenol, $C_6H_5OH(s)$, in kJ mol ⁻¹ . | | |--|---------| | | [3] | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | ••••• | | | | | | | | | ••••• | | | | | (b) The standard entropy change of formation, ΔS_f° , of phenol is -385 J K $^{-1}$ mol $^{-1}$. Calculate the Gibbs free energy change, ΔG_f° , for the formation of phenol at 298K, using section 1 of the data booklet. | | | | | | booket. | [3] | | DOOKIET. | [3] | | | [3] | | | [3] | | DOCKET. | [3] | | | [3] | | DOOKIET. | [3] | | DOOKET. | [3]
 | | DOCKET. | [3] | | DOCKET. | [3] | | DOCKET. | [3] | | | [3] | | | [3] | | | [3] | | (c) Determine whether the formation of phenol is spontaneous at 298K, give a reason. | [3] | | | [3] | | | | | | | | | | | | | | $C_8H_{18}(g) \rightarrow C_8H_{18}(I)$ $\Delta H^{e} = -41.5 \text{kJ mol}^{-1}$ | |---| | The standard entropy, S°, of $C_8H_{18}(g)$ is 467 J K^{-1} mol $^{-1}$ and $C_8H_{18}(I)$ is 360 J K^{-1} mol $^{-1}$. | | (a) Calculate the standard entropy change, ΔS^{o} , for the process. [1] | | [-] | | | | (b) Predict and explain the effect of an increase in temperature on the spontaneity of the process. Use section 1 of the data booklet. | | [3] | | | | | | | | | | | | (c) Using section 1 of the data booklet, calculate the temperature, in $^{\circ}$ C, at which Δ G = 0 for the process, and state the significance of this temperature. | | [3] | | | | | | | | | | | 2. The standard enthalpy change of reaction is given for the following process: 3. The Born-Haber cycle for lithium oxide is shown below, not to scale. | (a) Given that the enthalpy change of atomisation (ΔH_{at}) for lithium is +159 kJ mol ⁻¹ , and using | |--| | section 8 of the data booklet, calculate the enthalpy change for: $2Li(s) \rightarrow 2Li^{+}(g)$ | | [2] | |-------| | | | | | ••••• | | | | | | | | | | | (b) Given that the enthalpy change of atomisation (ΔH_{at}) for oxygen is +249 kJ mol⁻¹, and using **section 8** of the data booklet, calculate the enthalpy change for: ½ O_2 (g) \rightarrow O^{2-} (g) | [2] | |-------| | | | | | | | ••••• | | | | ••••• | | | (c) Given that the enthalpy change of formation (ΔH_f) for Li₂O is -598 kJ mol⁻¹ and using your answers in (a) and (b), calculate the lattice enthalpy for Li₂O in kJ mol⁻¹. | [2] | |-----------| | | | | | | |
••••• | | | | ••••••• | | | | (d) Justify why Na ₂ O has a lattice enthalpy of lower magnitude (absolute value) than Li ₂ O. | |---| | | | | | | | | | | | 4. Beryllium chloride, BeCl ₂ , is an off-white crystalline solid. | | (a) Calculate the molar enthalpy when solid beryllium chloride is dissolved in water, using sections 18 and 20 of the data booklet. | | [2] | | | | | | | | | | | | | | | | (b) Using section 1 of the data booklet and your answer in (a), predict and explain whether you | | might expect beryllium chloride dissolving in water to be a spontaneous process. | | [2] | | | | | | | | | | | | | | (c) The theoretical and experimental lattice enthalpies for BeCl ₂ are considerably different. What does this suggest about the bonding in BeCl ₂ ? | | [1] | | | | | | | | |