ENERGETICS Core (SL & HL)

1. An equation for the combustion of pentane is given below:

$$C_5H_{12}(I) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(I)$$

(a) Determine the standard enthalpy change, ΔH^{θ} , for this reaction using section 11 of the data booklet. Show your working.	
	[3]
	· • • • • • • • • • • • • • • • • • • •
	· • • • • • • •
	· • • • • • • • • • • • • • • • • • • •
(b) Calculate the standard enthalpy change, ΔH^e , for this reaction using section 12 of the data	
booklet. Show your working.	
	[3]
	•••••
	•••••
	•••••
	•••••
(c) State and briefly explain whether the method in (a) or the method in (b) above is likely to be the most accurate determination of ΔH^{o} , for this reaction.	ž
	[1]
	•••••

2. Copper has a relatively low specific heat capacity. A 50.0g sample of copper rises in temperature by 52.0°C when it absorbs 1000J of energy.
(a) Determine the specific heat capacity of copper in J g^{-1} K^{-1} using section 1 of the data booklet. Give your answer to three significant figures.
[2]
(b) 0.840g of iron powder was added to 40.0cm ³ of copper sulphate solution in a calorimeter. The copper sulphate was in excess. The maximum temperature rise of the solution was 15.0°C.
$Fe(s) + CuSO_4(aq) \rightarrow FeSO_4(aq) + Cu(s)$
(i) Assuming that the heat released was absorbed only by the solution, calculate the enthalpy change, ΔH , for this reaction. Use sections 1 and 2 of the data booklet.
[3]
(ii) State another assumption that you made in (h)(i)
(ii) State another assumption that you made in (b)(i). [1]

$N_2(g) + O_2(g) \rightarrow 2NO(g)$	$\Delta H = +181kJ$
(i) Sketch a labelled potential energy profile for this reaction	
	[2]
(ii) Given that the enthalpy change, ΔH , for the reaction as section 11 of the data booklet to calculate the bond enthal	
Section 11 of the data bookiet to calculate the bond entila	[2]
4. Sulfuric acid is produced in the Contact Process. The firs	t two steps are the reactions:
I $S(s) + O_2(g) \rightarrow SO_2(g)$ II $SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$	ΔH ⁺ = –297kJ ΔH ⁺ = –98kJ
-167	
(a) SO_3 is a solid at just below room temperature. If $SO_3(s)$ of $SO_3(g)$, would the ΔH for reaction II be more or less neg	
	[2]

3. (a) The reaction below is an endothermic reaction.

	ormation of SO₃(g).
	[2]
(c) Using the ΔH^{o} values given for reactions I and II al enthalpy of formation of $SO_{3}(g)$.	bove, calculate the ΔH^{e} for the standard
1,7	[2]
5. Given the enthalpy changes below, and average bo calculate the average bond enthalpy for the C–Cl bon	
calculate the average bond enthalpy for the C–Cl bon	d. Show your working.
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g)$	
calculate the average bond enthalpy for the C–Cl bon	ad. Show your working. $\Delta H^{o} = -96 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{\phi} = -96 \text{kJ mol}^{-1}$ $\Delta H^{\phi} = +715 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{\phi} = -96 \text{kJ mol}^{-1}$ $\Delta H^{\phi} = +715 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{o} = -96 \text{kJ mol}^{-1}$ $\Delta H^{o} = +715 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{o} = -96 \text{kJ mol}^{-1}$ $\Delta H^{o} = +715 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{o} = -96 \text{kJ mol}^{-1}$ $\Delta H^{o} = +715 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{o} = -96 \text{kJ mol}^{-1}$ $\Delta H^{o} = +715 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{o} = -96 \text{kJ mol}^{-1}$ $\Delta H^{o} = +715 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{o} = -96 \text{kJ mol}^{-1}$ $\Delta H^{o} = +715 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{o} = -96 \text{kJ mol}^{-1}$ $\Delta H^{o} = +715 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{o} = -96 \text{kJ mol}^{-1}$ $\Delta H^{o} = +715 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{\phi} = -96 \text{kJ mol}^{-1}$ $\Delta H^{\phi} = +715 \text{kJ mol}^{-1}$
calculate the average bond enthalpy for the C–Cl bon $C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \label{eq:calculate}$	ad. Show your working. $\Delta H^{\phi} = -96 \text{kJ mol}^{-1}$ $\Delta H^{\phi} = +715 \text{kJ mol}^{-1}$