KINETICS AHL (HL only)

Please ensure that you have also completed the Core (SL & HL) questions

1. The following reaction occurs at high temperature:

$$NO(g) + CO(g) + O_2(g) \rightarrow NO_2(g) + CO_2(g)$$

(a) Given the data for four experiments below, deduce the order of reaction for each reactant, and write the rate expression. **Explain your reasoning.**

	[NO(g)] /	[CO(g)] /	[O ₂ (g)]/	Initial rate /
Experiment	mol dm ⁻³	mol dm ⁻³	mol dm ⁻³	$mol dm^{-3} s^{-1}$
1	1.00×10 ⁻³	1.00×10 ⁻³	1.00×10 ⁻¹	4.40×10 ⁻⁴
2	2.00×10 ⁻³	1.00×10 ⁻³	1.00×10 ⁻¹	1.76×10 ⁻³
3	2.00×10 ⁻³	2.00×10 ⁻³	1.00×10 ⁻¹	1.76×10 ⁻³
4	4.00×10 ⁻³	1.00×10 ⁻³	2.00×10 ⁻¹	7.04×10 ⁻³

[4]

(b) Calculate a value for the rate constant, stating its units.
(b) Calculate a value for the rate constant, stating its units.

2. The decomposition of a sample of hydrogen peroxide, after addition of a catalyst, was followed over time:

(a) Using the graph (show your working) determine the half-life of the hydrogen peroxide.
--	---

[2]

(c) Given that $t_{\frac{1}{2}} = \frac{ln^2}{k}$, calculate a value for the rate constant for this reaction (units not required).

[1]
	•

(d) State how the rate constant will change with increasing temperature.

Using section	omposition reaction of hydrogen peroxide was conducted at different temperatures. In 1 of the data booklet, describe how the data from these experiments could be used
to draw a gr	raph to determine the activation energy. [3]
data bookle	n energy can also be found using two data points. Using section 1 and section 2 of the st, calculate the activation energy for this reaction (in kJ mol ⁻¹) if the rate constant was 8.20×10^{-4} s ⁻¹ at 298K and 9.50×10^{-4} s ⁻¹ at 308K. Give your answer to three significant
•••••	
3. The follow	wing is a proposed mechanism for the reaction of NO(g) with H₂(g).
Step 1:	$2NO(g) \rightarrow N_2O_2(g)$
Step 2:	$N_2O_2(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$
(a) Identify	the intermediate in the reaction.
(2) . 20	[1]

(b) Write an equation for the overall reaction between $NO(g)$ and $H_2(g)$			
(c) Deduce a	a rate expression if $\operatorname{ extbf{step 1}}$ were the rate determining step. Explain your reas	oning. [2]	
(d) Deduce a	a rate expression if step 2 were the rate determining step. Explain your reas	soning. [3]	
(e) Assuming that the reaction is second order with respect to NO, sketch the two graphs below. [2]			
,	↑		
[NO]	Rate		
[]	Nate		

Time

Total Marks 27 (41 minutes)

[NO]