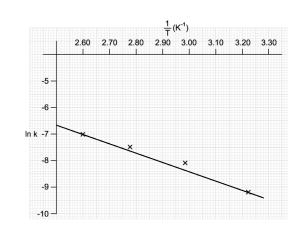


16.2 Activation Energy


Question Paper

Course	DP IB Chemistry
Section	16. Chemical Kinetics (HL only)
Торіс	16.2 Activation Energy
Difficulty	Medium

Time allowed:	10
Score:	/5
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 1

Which of the following statements about the Arrhenius plot are correct?

- I. The gradient has a value of E_a / R
- II. The intercept on the y-axis is $\ln A$
- III. The Arrhenius plot will give a value for activation energy in J mol⁻¹
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1mark]

Question 2

The following information was obtained for the rate constant, k, for a reaction at 25 °C

A	Ea	R
$2.57 \times 10^9 \mathrm{s}^{-1}$	96.2 kJ mol ⁻¹	8.31 J K ⁻¹ mol ⁻¹

Which expression correctly represents how to calculate the rate constant, k?

A. $k = (2.57 \times 10^9) \times e^{(-96.2/8.31 \times 25)}$

B. $k = (2.57 \times 10^9) \times e^{(-96.2/8.31 \times 298)}$

C. $k = (2.57 \times 10^9) \times e^{(-96200/8.31 \times 25)}$

D. $k = (2.57 \times 10^9) \times e^{(-96200/8.31 \times 298)}$

[1 mark]

Question 3

The following experimental data was collected.

Activation energy, E _a	111 kJ mol ⁻¹
Rate constant, k	1.30 x 10 ⁻⁴ mol ⁻¹ dm ³ s ⁻¹
Arrhenius constant, A	4.55 × 10 ¹³ mol ⁻¹ dm ³ s ⁻¹

Which expression correctly calculates the temperature of the reaction?

A.
$$T = \frac{111}{8.31 \times (ln \ 4.55 \times 10^{13} - ln \ 1.30 \times 10^{-4})}$$

B. $T = \frac{111 \times 10^3}{8.31 \times (ln \ 4.55 \times 10^{13} - ln \ 1.30 \times 10^{-4})}$
C. $T = \frac{111 \times 10^3}{8.31 \times (ln \ 1.30 \times 10^{-4} - ln \ 4.55 \times 10^{13})}$
D. $T = \frac{111 \times 10^3}{(8.31 \times 10^{-3}) \times (ln \ 4.55 \times 10^{13} - ln \ 1.30 \times 10^{-4})}$

[1mark]

Question 4

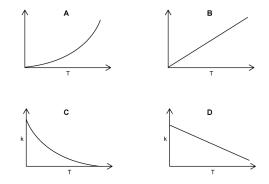
Consider the following statements:

I. Many reactions show a doubling of the rate with a temperature increase of 10K $\,$

II. The units of k for a second order reaction are mol⁻¹ dm³ s⁻¹

III. In the Arrhenius equation, A relates to the energy requirements of the collisions

Which statements are correct?


- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]

SaveMyExams ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

Question 5

Which graph shows the correct relationship between the rate constant, k, and temperature?

[1mark]

Page 4 of 4