

14.1 More Structures & Shapes

Question Paper

Course	DP IB Chemistry
Section	14. Chemical Bonding & Structure (HL only)
Торіс	14.1 More Structures & Shapes
Difficulty	Easy

Time allowed:	40
Score:	/31
Percentage:	/100

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question la

a) Two types of covalent bond are sigma and pi bonds.
) Describe how a sigma (σ) bond is formed
) Describe how a pi (π) bond is formed

[2 marks]

[1]

[1]

Question 1b

b)

Describe the difference in the location of the electron dense regions in sigma (σ) and pi (π) bonds.

[2]

[2 marks]

Question lc

c) Deduce the number of sigma (σ) and pi (π) bonds in methane, CH_4.

[2]

[2 marks]

Question 1d

d)

Deduce the number of sigma (σ) and pi (π) bonds in oxygen, O_{2.}

Question 2a

a)

Sulfur can form bonds with six fluorine atoms to form sulfur hexafluoride, SF_6 .

i)

How many electrons are in the outer shell of the sulfur in SF_6 ?

ii)

State the minimum and maximum numbers of electrons possible in the outer shell of sulfur.

[2 marks]

[1]

[1]

[2]

[2 marks]

Question 2b

b)

Sulfur has no lone pairs when bonded to fluorines in SF_6 . Predict the molecular geometry of sulfur hexafluoride, SF_6 .

[1]

[1 mark]

Question 2c

c) State the F-S-F bond angles in SF₆.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2d

d)

Phosphorus pentafluoride, PF_5 , is also a molecule with an expanded octet around the central atom.

	[3 marks]
State the F-P-F bond angle(s)	[1]
iii)	[1]
ii) Predict the molecular geometry of PF ₅	
Draw a Lewis (electron dot) structure for PF ₅	[1]

Question 3a

a)

Although noble gases do not normally react, a few compounds are possible. One is xenon tetrafluoride. Draw the Lewis structure (electron dot) for XeF₄.

[2]

[2 marks]

Question 3b

b)

Predict the molecular geometry and electron domain geometry for the XeF_4 molecule.

[2 marks]

Question 3c

c) Predict and explain the F-Xe-F bond angle in ${\rm XeF_4}$

[2]

[2 marks]

Question 3d

d)

The formal charge on an atom can be calculated by the following:

$FC = (Number of valence electrons) - \frac{1}{2}(Number of bonding electrons) - (Number of non-bonding electrons)$

Calculate the formal charge on the xenon and the fluorines in xenon tetrafluoride, XeF_4 .

[2]

[2 marks]

Question 4a

a) Draw a Lewis (electron dot) structure for carbon dioxide, CO₂.

[2]

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4b

b)

 $\label{eq:predict} Predict the molecular geometry and the O-C-O \ bond \ angle \ in \ carbon \ dioxide, \ CO_2.$

[2]

[2 marks]

Question 4c

c) An alternative way to draw the carbon dioxide molecule is:

$$\overline{\overline{O}} - C \equiv \hat{O}$$

i ii

Identify the formal charge on each of the oxygen atoms.

[2]

[2 marks]

Question 4d

d)

State which of the Lewis structures, that from part a) or part c), is preferable and explain your choice.

[2]

[2 marks]