

16.1 Rate Expression & Reaction Mechanism

Question Paper

Course	DP IB Chemistry	
Section	16. Chemical Kinetics (HL only)	
Торіс	16.1 Rate Expression & Reaction Mechanism	
Difficulty	Easy	

Time allowed:	10
Score:	/5
Percentage:	/100

Question 1

Which of the following statements about the rate-determining step are correct?

- 1. It has the highest activation energy
- 2. It can be used to deduce the rate expression
- 3. It is the slowest step in the reaction mechanism
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]

Question 2

The rate information below was obtained for the following reaction at a constant temperature:

$A + 2B \rightarrow C + 2D$

Experiment	Initial [A] / mol dm ⁻³	Initial [B] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.25	0.25	3.5 x 10 ⁻⁴
2	0.25	0.50	To be calculated

The rate equation for this reaction is rate = k [B]

What is the initial rate of reaction for experiment 2, in mol $dm^{-3} s^{-1}$?

A. $(4 \times 3.5 \times 10^{-4})$

B. (2 x 3.5 x 10⁻⁴)

 $C.3.5 \times 10^{-4}$

D. $(0.5 \times 3.5 \times 10^{-4})$

[1mark]

Question 3

The rate equation for the reaction between A and B is:

Rate = k[A][B]

What are the correct units for the rate constant of this rate equation?

A. mol⁻¹ dm³ s⁻¹

B. mol⁻² dm⁶ s⁻¹

C. mol² dm⁻⁶ s⁻¹

D. mol dm⁻³ s⁻¹

[1mark]

Question 4

The rate information below was obtained for the following reaction at a constant temperature:

 $5\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+6\mathrm{H}^{+}(\mathrm{aq})\rightarrow3\mathrm{Br}_{2}(\mathrm{aq})+3\mathrm{H}_{2}\mathrm{O}\left(\mathrm{I}\right)$

What is the order of reaction with respect to $[H^+]$?

A. One

B. Two

C. Six

D. Zero

[1 mark]

FaveMyExams Head to <u>savemyexams.co.uk</u> for more a we some resources

Question 5

The mechanism for the following reaction between nitrogen(II) oxide and carbon monoxide is shown.

 $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

Step 1: $NO_2 + NO_2 \rightarrow NO_3 + NO$ slow step

Step 2: $NO_3 + CO \rightarrow NO_2 + CO_2$ fast step

What rate expression is consistent with the mechanism?

A. Rate = k [NO₂] [CO]

B. Rate = k [NO₃] [CO]

C. Rate = $k [NO_2]^2$

D. Rate = k [NO₂]

[1mark]

Page 4 of 4