

14.1 More Structures & Shapes

Question Paper

Course	DP IB Chemistry
Section	14. Chemical Bonding & Structure (HL only)
Торіс	14.1 More Structures & Shapes
Difficulty	Hard

Time allowed:	70
Score:	/51
Percentage:	/100

Question la

a)

Deduce the number of possible resonance structures for the carbonate ion, CO_3^{2-} , and draw two of them. Include the formal charges for each oxygen.

[4]

[4 marks]

Question 1b

b) An alternative structure for the carbonate ion is proposed:

[2]

[2 marks]

Question 1c

c)

Deduce the number of sigma (σ) and pi (π) bonds present in any of the resonance structures of the carbonate ions shown in part a).

SaveMyExams ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

[2 marks]

Question 1d

Question 1d	
d)	
Deduce the bond order of the C-O bond in the carbonate ion, CO_3^{2-} .	
	[1]
	[1mark]
Question 2a	
a)	
Silicon can form silicon tetrachloride SiCl ₄ and also silicon hexachloride, SiCl ₆ ²⁻ .	
i) Draw the Lewis structure for SiCl ₄ and SiCl ₆ ²⁻ .	
	[2]
ii)	[4]
Use VSEPR theory to deduce the CI-Si-CI bond angles in both the SiCl ₄ and SiCl ₆ ²⁻ molecules.	
	[2]
iii)	
Predict the molecular geometry of each molecule.	
	[2]
	[6 marks]

Question 2b

b) Carbon can form CCl_4 but cannot form CCl_6^{2-} . Explain why.

[3]

[3 marks]

Question 2c

c) Deduce which, if any, of SiCl₄ and SiCl₆²⁻, are polar molecules and explain your choice.

[2]

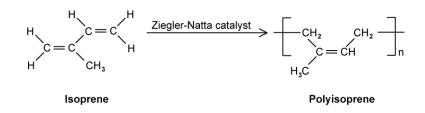
[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2d

d)

Formal charge can be used to decide on the most stable, and therefore most likely, form a molecule can take. Resonance structures occur when more than one Lewis diagram describes a structure equally well.


i) Deduce the formal charge on the silicon and each chlorine within SiCl₄ and SiCl₆²⁻ [2] ii) Predict which will be the most stable molecule and explain your answer. [2] iii) Predict if any resonance structures are possible for SiCl₆²⁻ and explain your answer. [2] [3] [4] [4] [5] [6]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 3a

a)

Natural rubber, polyisoprene, forms a flexible polymer in the following reaction:

i)

Deduce the number of sigma (σ) and pi (π) bonds in the monomer.

ii)

Deduce the number of sigma (σ) and pi (π) bonds in the repeating unit.

[2]

[2]

[4 marks]

Question 3b

b)

Deduce the number of carbons with a tetrahedral geometry in both the monomer, isoprene, and the repeating unit of the polymer, polyisoprene.

[2]

[2 marks]

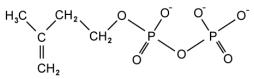
Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 3c

c)

Polymer formation involves a radical intermediate to lengthen the polymer chain. The radical in the formation of polyisoprene is shown below, where X represents the existing chain:

i) Identify the atom that is the radical in the structure shown.
[1]
ii) Deduce the formal charge on the radical atom.
[1]
iii) Use the information above, and your knowledge of structure and bonding, to predict if the structure is stable or not.
[2]


[4 marks]

Question 3d

d)

Isoprene is not produced directly by the rubber tree, but is the product of a series of biochemical reactions from the isopentenyl pyrophosphate molecules present in the tree.

The structure of isopentenyl pyrophosphate is shown below:

`Deduce the number of sigma (σ) and pi(π) bonds present in one molecule of isopentenyl pyrophosphate.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4a

a)

 $One \,interhalogen\, compound\, is\, \mathsf{IF}_5.$

i)

Draw the Lewis structure for IF_5 .

ii)

Use VSEPR theory to deduce the bond angles in $\mathsf{IF}_5.$

iii)

Predict whether IF_5 will be a polar molecule and explain your choice.

[2]

[1]

[1]

[4 marks]

Question 4b

b)

lodine can also form the triiodide ion, I_3^- .

i)

Draw the Lewis structure for I_3^- .

ii)

Use VSEPR theory to deduce the bond angles in I_3^- .

iii)

Explain the position of the lone pairs on the central iodine.

[2]

[1]

[1]

[4 marks]

Question 4c

c)

Deduce the formal charge on each of the iodine atoms in the triiodide molecule, I_3^- .

[2]

[2 marks]

SaveMyExams Headtosavemyexams.co.uk for more awesome resources

Question 4d

d)

An alternative Lewis structure for the triiodide ion, I_3^- , is suggested:

Deduce the formal charges and use them to suggest if the structure is stable and likely to occur.

[3]

[3 marks]