

10.2 Functional Group Chemistry

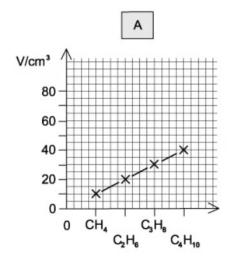
Question Paper

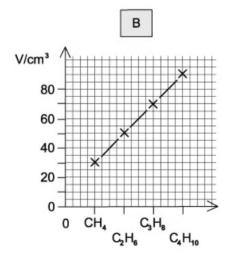
Course	DP IB Chemistry	
Section	10. Organic Chemistry	
Topic 10.2 Functional Group Chemistry		
Difficulty	Hard	

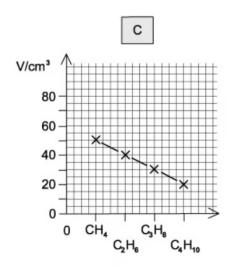
Time allowed: 20

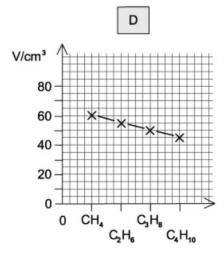
Score: /10

Percentage: /100

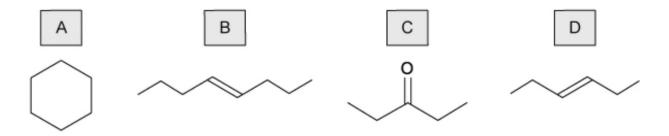

Limonene is an oil formed in the peel of citrus fruits.


Limonene


Which product is formed when an excess of bromine, $Br_2(l)$, reacts with limonene at room temperature in the dark?


Samples of 10 cm^3 of each of the first four members of the alkane series are separately mixed with 70 cm^3 of oxygen. Each is then burned and the total volume, V, of residual gas measured again at room temperature and pressure.

Which graph represents the results that would be obtained?



A periodic table is needed for this question

Which compound has an M_r of 84.18 and will react with HBr to give a product with an M_r of 165.09?

[1 mark]

Question 4

An organic compound \mathbf{Y} with molecular formula $C_5H_{12}O$, is oxidised to compound \mathbf{Z} with molecular formula $C_5H_{10}O_2$.

What could be the structural formula of **Y**?

- 1 CH₃(CH₂)₄OH
- 2 CH₃CH₂CH(CH₂OH)CH₃
- 3 CH₃C(CH₃)₂CH₂OH
- **A** 1, 2 and 3 **B** 1 and 3 only **C** 2 and 3 only **D** 3 only

A periodic table is needed to answer this question

A number of alcohols with the formula $C_4H_{10}O$ are separately oxidised. Using 7.41 g of the alcohols a 50% yield of organic product is achieved.

What mass of product could be obtained?

- 1 4.41 g of butanoic acid
- 2 4.41 g of 2-methylpropanoic acid
- 3 3.61 g of butanone
- **A** 1, 2 and 3 **B** 1 and 2 only **C** 2 and 3 only **D** 1 only

[1 mark]

Question 6

Which compound is produced in the reaction between pent-2-ene and steam?

- A (CH₃)₂CHCH₂CH₂OH
- B CH₃CH(OH)CH₂CH₂CH₂CH₃
- C CH₃CH₂CH₂CH₂CH₂OH
- D CH₃CH₂CH₂CH(OH)CH₃

When compound T reacts with its own oxidation product, a sweet-smelling liquid is produced.

What is the identity of compound **T**?

- Α butanal
- В butanone
- С butan-1-ol
- D butanoic acid

[1 mark]

Question 8

In the presence of an H⁺ catalyst, compound X reacts with ethanoic acid to produce the compound below.

What is the molecular formula of compound X?

A C_4H_8O **B** $C_4H_8O_2$ **C** $C_2H_6O_2$ **D** $C_2H_6O_3$

Compound \mathbf{K} , $C_5H_{12}O$, is oxidised by acidified sodium dichromate(VI) to compound \mathbf{L} .

Compound ${\bf L}$ reacts with butan-2-ol in the presence of a little concentrated sulfuric acid to give liquid ${\bf M}$.

What could be the formula of liquid **M**?

- \mathbf{A} (CH₃)₂CHCH₂CO₂C(CH₃)₃
- $\mathbf{B} \qquad \mathrm{CH_3}(\mathrm{CH_2})_3\mathrm{CO_2}(\mathrm{CH_2})_3\mathrm{CH_3}$
- C CH₃(CH₂)₃CO₂CH(CH₃)CH₂CH₃
- $D = CH_3(CH_2)_2CO_2CH_2CH_2(CH_3)_2$

 $Head to \underline{save my exams. co.uk} for more a we some resources$

Question 10

Shown below is a reaction sequence starting with 1-chlorobutane.

What is the correct classification of the types of reactions shown?

	I	Ш	III
Α	substitution	oxidation	substitution
В	addition	substitution	condensation
С	oxidation	substitution	condensation
D	substitution	oxidation	condensation