

3.2 Modelling a Gas

Question Paper

Course	DP IB Physics
Section	3. Thermal Physics
Topic	3.2 Modelling a Gas
Difficulty	Easy

Time allowed: 60

Score: /46

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question la

(a) Define the mole.			

[1 mark]

[1]

Question 1b

 4.7×10^{23} molecules of neon gas is trapped in a cylinder.

(b)

Calculate the number of moles of neon gas in the cylinder.

[2]

[2 marks]

Question 1c

The molar mass of neon gas is 20 g mol^{-1} .

(c)

Calculate the mass of the neon gas in the cylinder.

[4]

[4 marks]

 $Head to \underline{save my exams.co.uk} for more awas ome \ resources$

Question 1d

(d)

Calculate the temperature of the gas.

[3]

[3 marks]

Question 2a

(a)

State what is meant by an ideal gas.

[1]

[1 mark]

Question 2b

(b)

State the conditions for a real gas to approximate to an ideal gas.

[3]

[3 marks]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 2c

(c)

Describe how the ideal gas constant, R, is defined.

[2]

[2 marks]

Question 2d

The graphs shows how pressure, p, varies with absolute temperature, T, for a fixed mass of an ideal gas.

(d)
Outline the changes, or otherwise, to the volume and density of the ideal gas as the absolute temperature increases.

[2]

[2 marks]

Question 3a

(a)

State three assumptions of the kinetic model of an ideal gas.

[3]

 $Head to \underline{savemy exams.co.uk} for more awas ome resources$

[3 marks]

Question 3b

A tank of volume $21\,\mathrm{m}^3$ contains 7.0 moles of an ideal monatomic gas. The temperature of the gas is $28\,^\circ\mathrm{C}$.

(b)

Calculate the average kinetic energy of the particles in the gas.

[3]

[3 marks]

 $Head to \underline{save my exams.co.uk} for more a we some resources$

Question 3c

•	ragraph explains, ncrease in pressui		the kinetic mod	lel of an idea	al gas, how an increase in	temperature of the
					er This increas per collision leads t	
(c) Complete the se	ntences using ke	ywords from the	box below.			
	These wor	ds can be us	ed once, mo	re than o	once, or not at all]
	pressure		force		momentum	
	higher	lower	less	more	kinetic energy	
						[3 marks

Question 3d

(d)

Calculate the pressure of the gas described in part (b).

[3]

[3 marks]

Question 4a

(a)

Sketch on both axes the change in pressure and volume for an ideal gas at constant temperature.

[2]

[2 marks]

Question 4b

(b)

Sketch the graphs in part (a) at a higher temperature.

[2]

[2 marks]

Question 4c

For an ideal gas at constant volume, the pressure, *p*, and temperature, *T*, are directly proportional:

$$p \propto T$$

(c)

State the equation for an initial pressure p_1 at temperature T_1 and final pressure p_2 and temperature T_2 .

[1]

[1 mark]

 $Head to \underline{save my exams. co.uk} for more a we some resources$

Question 4d

The final	pressure of a	an ideal das is	500 Pa and	dits temperati	ure rises from	410 K to 495 K.

(d)

Calculate the initial pressure of the gas.

[3]

[3 marks]

Question 5a

(a)

Define pressure.

[1]

[1 mark]

Question 5b

When there are a large number of particles in a container, their collisions with the walls of the container give rise to gas pressure.

An ideal gas with a pressure of 166 kPa collides with the walls of its container with a force of 740 N.

(b)

Calculate the area that each particle collides on.

[4]

[4 marks]

Question 5c

An ideal gas is one that obeys the relationship

$$pV \propto T$$

(c)

If the volume an ideal gas increases, explain how this affects the:

(i)

Pressure, if the temperature remains constant.

[1]

(ii) Temperature, if the pressure remains constant.

[1]

[2 marks]

Question 5d

The ideal gas equation can be rearranged to give

$$\frac{pV}{T} = \text{constant}$$

This relationship only holds true under a certain condition.

(d)

State the condition required for the equation to apply to an ideal gas.

[1]

[1 mark]