

18.2 Calculations Involving Acids & Bases

Question Paper

Course	DP IB Chemistry	
Section	18. Acids & Bases (HL only)	
Торіс	18.2 Calculations Involving Acids & Bases	
Difficulty	Easy	

Time allowed:	10
Score:	/5
Percentage:	/100

SaveMyExams
Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 1

Which of the following is the acid dissociation, K_a , constant for ethanoic acid?

A. CH₃COOH

$$\mathsf{B.} \frac{[\mathsf{CH}_3\mathsf{COO}^-][\mathsf{H}^+]}{[\mathsf{CH}_3\mathsf{COOH}]}$$

$$C. \frac{[CH_3COOH]}{[CH_3COO^-][H^+]}$$

 $\mathsf{D}.\,[\mathsf{CH}_3\mathsf{COO}^-][\mathsf{H}^+]$

Question 2

At the same concentration, which acid would have the lowest pH?

A. $C_6H_5COOHK_a = 6.3 \times 10^{-5} \text{ mol dm}^{-3}$

B. HCOOH $K_a = 1.8 \times 10^{-4} \text{ mol dm}^{-3}$

C. HCN $K_a = 4.9 \times 10^{-10} \, \text{mol dm}^{-3}$

D. $CH_3CH_2COOHK_a = 1.4 \times 10^{-5} \text{ mol dm}^{-3}$

[1 mark]

[1mark]

Question 3

The pK_b value of ethylamine is 3.35 at 298 K. What is the value of the pK_a ethylammonium ion?

A. $\frac{10^{-14}}{3.35}$ B. 14 - 3.35

C. $\frac{14}{3.35}$

D. $\frac{10^{-14}}{10^{-3.35}}$

[1 mark]

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 4

Which of the following is the correct equation to calculate the concentration of hydroxide ions?

A. $\frac{K_{\rm w}}{\rm pOH}$

B. -log [H⁺]

C.14 - pOH

D. 10^{-pOH}

[1 mark]

Question 5

Which shows the correct relationship between K_w , K_a and K_b ?

A. $K_{\rm w} = K_{\rm a} + K_{\rm b}$

 $\mathsf{B}.\,K_{\mathsf{w}} = K_{\mathsf{a}}\,K_{\mathsf{b}}$

$$C.K_w = \frac{K_a}{K_b}$$

$$\mathsf{D}.K_w = \frac{K_b}{K_a}$$

[1 mark]