

10.1 Fundamentals of Organic Chemistry Question Paper

Course	DP IB Chemistry
Section	10. Organic Chemistry
Topic	10.1 Fundamentals of Organic Chemistry
Difficulty	Hard

Time allowed: 20

Score: /10

Percentage: /100

How many isomers, including structural and stereoisomers, with the formula C_5H_{10} have structures that involve π bonding?

A 3

B 4

C 5

D 6

[1 mark]

Question 2

Study the formulae shown below and determine which molecules are isomers of each other

I. $CH_3(CH_2)_3CH_2CH_3$

II. (CH₃)₂CHCH₂CH₃

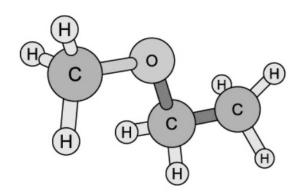
III. CH₃CH(CH₃)CH₂CH₂CH₃

A I and II only

B I and III only

C II and III only

D I, II and III


What is the correct condensed structural formula for 2,2-dibromo-4-methylhexane?

- A CH₃CBr₂CH(CH₃)CH₂CH₂CH₃
- B CH₃CHBrCBr(CH₃)CH₂CH₂CH₃
- C CH₃CBr₂CH₂CH(CH₃)CH₂CH₃
- D CH₃CHBrCH(CH₃)CHBrCH₂CH₃

[1 mark]

Question 4

What is the correct IUPAC name for the molecule shown?

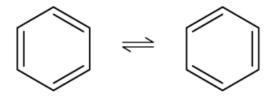
- A ethoxyethane
- **B** methoxyethane
- **C** propanone
- **D** propanal

Which of the molecules shown below is not an isomer of pentan-2-ol?

- A pentan-1-ol
- B 2-methylbutan-2-ol
- C 2-methylpentan-2-ol
- **D** pentan-3-ol

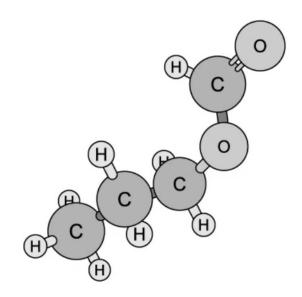
[1 mark]

Question 6


Which of the following pairs are functional group isomers?

- I. CH₃CH(OH)CH₂CH₂CH₃ and CH₃CH₂CH(OH)CH₂CH₃
- II. CH₃CH₂CH₂COOH and HCOOCH₂CH₂CH₃
- III. CH₃CH₂CH₂OH and CH₃OCH₂CH₃
- A I and II only
- B I and III only
- C II and III only
- **D** I, II and III

The structure of benzene is often shown as


This is a representation of a resonance hybrid structure that lies between these two possible structures

Evidence for this resonance structure is:

- I. The carbon-carbon bond lengths lie between the value for a single and a double bond
- II. The bond angles are all equal in benzene
- III. The enthalpy of hydrogenation of benzene is less exothermic than expected
- A I and II only
- B I and III only
- C II and III only
- D I, II and III

What is the correct name of the following molecule using IUPAC rules?

- A propyl methanoate
- B methyl propanoate
- **C** methoxypropane
- D butoxymethanal

 $Head to \underline{save my exams.co.uk} for more a we some resources$

Question 9

What types of isomerism can the following molecule show?

- I. Branch-chain
- II. Positional
- III. Functional group
- A I and II only
- B I and III only
- C II and III only
- D I, II and III

Which row of the table is correct about the trend and explanation in the boiling points of the alcohols CH_3OH , C_2H_5OH and C_3H_7OH ?

	Trend in boiling points	Explanation
Α	$CH_3OH > C_2H_5OH > C_3H_7OH$	The London dispersion forces decrease with each additional CH ₂
В	$CH_3OH > C_2H_5OH > C_3H_7OH$	The strength of the hydrogen bonds decreases with each additional CH ₂
С	$C_3H_7OH > C_2H_5OH > CH_3OH$	The London dispersion forces increase with each additional CH ₂
D	$C_3H_7OH > C_2H_5OH > CH_3OH$	The strength of the hydrogen bonds increases with each additional CH ₂