

4.1 Oscillations

Question Paper

Course	DP IB Physics
Section	4. Waves
Торіс	4.1Oscillations
Difficulty	Hard

Time allowed:	20
Score:	/10
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 1

When an object oscillates in simple harmonic motion, a restoring force acts toward the equilibrium position.

Which graph shows the restoring force, F, as a function of displacement, x?

[1mark]

Question 2

The graph below shows the displacement as a function of time for a particle in SHM.

At certain points in the oscillation, the acceleration and velocity act in opposite directions.

Which letter indicates such a point?

SaveMyExams

Question 3

A mass is attached to a spring from above and the spring is secured to a clamp. The mass is pulled down and released resulting in a simple harmonic oscillation.

Which one of the following statements is true?

- A. The tension, T, in the spring is at a minimum as the mass passes through the equilibrium position
- B. The total potential energy, E_P, in the system is at a maximum when the mass is at the highest point of its oscillation
- C. The acceleration, a, of the mass is at a maximum as it passes through the equilibrium position
- D. The kinetic energy, $E_{\rm K}$, is at a minimum when the mass is at the lowest point in its oscillation

[1mark]

Question 4

A pendulum bob on a string oscillates in SHM with a frequency, f.

The period, *T*, of a simple pendulum is related to the length of the string, *I*, and the acceleration of free fall, *g*, by the following equation:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

What would the ratio be of the original frequency to the new frequency if the length of the string was increased by a factor of 4?

A.
$$\frac{1}{\sqrt{2}}$$

B. $\frac{1}{2}$
C. $\sqrt{2}$
D. 4

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 5

A simple pendulum oscillates in SHM.

Which row correctly describes the force, *F*, acceleration, *a*, and velocity, *v*, at position Y?

	Force	Acceleration	Velocity
Α.	zero	zero	max
В.	max	max	zero
C.	max	zero	max
D.	zero	max	zero

[1 mark]

Page 4 of 7

Save My Exams

Head to savemy exams.co.uk for more a we some resources

Question 6

The total energy, E_{τ} , of a mass-spring system in SHM is related to the mass, *m*, angular speed, ω , and the amplitude, *A*, by the following equation:

$$E_T = \frac{1}{2}m\omega^2 A^2$$

What is the ratio of the original amplitude to the new amplitude if the mass is reduced by a factor of 4 and the angular speed is halved?

A. $\frac{1}{2}$ B. 1 C. $\frac{1}{\sqrt{8}}$ D. 4

[1 mark]

Question 7

A mass spring system is set up so that the mass glides on a frictionless surface between two springs on a horizontal bench. The mass-spring system performs SHM

Which of the following statements is true?

- A. As the mass oscillates about the equilibrium position, the kinetic energy of the mass is zero when the displacement from equilibrium is zero
- B. As the mass oscillates about the equilibrium position, the kinetic energy of the mass is zero when the restoring force acting on the mass is zero
- C. As the mass oscillates about the equilibrium position, the potential energy of the spring is at a maximum when the kinetic energy of the mass is zero
- D. As the mass oscillates about the equilibrium position, the potential energy of the mass is at a maximum when the acceleration of the mass is zero

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 8

A mass-spring system has a period, *T*, mass, *m*, and a spring constant, *k*. These quantities are related by the following equation:

$$T = 2\pi \sqrt{\frac{m}{k}}$$

A new spring has a spring constant of 3 times the original value.

Using this new spring, which mass would cause the period, T, to decrease by a factor of 6?

A. $\frac{1}{6}m$ B. $\frac{1}{3}m$ C. 8 m D. 12 m

[1mark]

Question 9

A. $\frac{T}{4}$

 $B.\frac{T}{2}$

C.T

D.2T

The graph below shows the kinetic energy of a simple pendulum as a function of time. The time period of the pendulum is *T*. What does the length of the line JK represent?

Question 10

The period, *T*, of a simple pendulum depends upon the length of the string, *I*, and the acceleration of free fall, *g*, as defined by the following equation:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

If the length of the string was reduced by a factor of 5, what would be the resulting period of the new oscillator?

A. 0.27

B.0.457

C.2T

D. 8T