

9.1 Redox Processes

Question Paper

Course	DP IB Chemistry
Section	9. Redox Processes
Topic	9.1 Redox Processes
Difficulty	Hard

Time allowed: 20

Score: /10

Percentage: /100

When heated ammonium nitrate, NH₄NO₃, can decompose explosively.

$$NH_4NO_3 \rightarrow N_2O + 2H_2O$$

The nitrogen atoms in NH₄NO₃ have different oxidation numbers.

What are the oxidation numbers for each of the N atoms when this reaction proceeds?

- **A** +4, -4 **B** -2, -4 **C** +4, -6 **D** +2, +6

[1 mark]

Question 2

In winemaking, to prevent the oxidation of ethanol by air, sulfur dioxide (SO₂) is added. In order to calculate the amount of SO_2 a sample is titrated with iodine (I_2). The reaction is a one to one ratio for SO₂ and I₂ to produce H₂SO₄ as well as another product.

What is the change in the oxidation number of sulfur in this reaction?

20 cm³ of a 0.60 mol dm⁻³ solution of thallium nitrate (TINO₃) requires 40 cm³ of 0.20 mol dm⁻³ acidified ammonium metavanadate (NH₄VO₃) to produce Tl³⁺_(aq)ions.

Vanadium is the only element reduced in this reaction. What is the oxidation number of the reduced vanadium?

A +1

B +2

C +3

D + 4

[1 mark]

Question 4

If a solution contains both bromine and chlorine, BrO₃⁻ ions are produced.

The reactions leading to the production of BrO₃⁻ ions are shown below:

 $Br_2 + H_2O \rightarrow HBr + HBrO$ Reaction 1:

3HBrO + $Cl_2 \rightarrow 2Cl^- + BrO_3^- + Br_2 + 3H^+$ Reaction 2:

- Chlorine is reduced in reaction 2 1
- 2 Bromine is reduced in both reaction 1 and reaction 2
- 3 Bromine is oxidised in both reaction 1 and reaction 2

Which statements about these reactions are correct?

A 1 only

B 1 and 2 only **C** 2 and 3 only **D** 1, 2 and 3

[] mark]

If a dilute acid is added to an aqueous solution containing nitrite ions, NO₂⁻, two different nitrogen compounds are released as gases.

$$2H^{+}(aq) + 2NO_{2}^{-}(aq) \rightarrow H_{2}O(I) + NO(g) + NO_{2}(g)$$

Which of the three statements below correctly describe the process?

- 1 The $H^+(aq)$ ion is oxidised by $NO_2^-(aq)$.
- 2 Some nitrogen atoms are oxidised, and some nitrogen atoms are reduced
- 3 The H⁺(aq) ion acts as a catalyst.

A 1 and 2 only **B** 2 only **C** 2 and 3 only **D** 1, 2 and 3

A voltaic cell consisting of zinc and silver is set up. The following overall reaction takes place:

$$Zn(s) + 2Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2Ag(s)$$

What are the correct half-equations at each electrode?

	Anode (negative electrode)	Cathode (positive electrode)
Α	$Ag(s) \rightarrow Ag^+ (aq) + e^-$	$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$
В	$Ag^+(aq) + e^- \rightarrow Ag(s)$	$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$
С	$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$	$Ag^+(aq) + e^- \rightarrow Ag(s)$
D	$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	$Ag(s) \rightarrow Ag^{+}(aq) + e^{-}$

Below are four descriptions about the movements of electrons in voltaic cells.

Which is the correct statement?

- A Electrons flow through the external wire from the cathode (positive electrode) to the anode (negative electrode)
- **B** Electrons flow through the external wire from the anode (negative electrode) to the cathode (positive electrode)
- **C** Electrons flow through the salt bridge from the oxidizing agent to the reducing agent
- D Electrons flow through the salt bridge from the reducing agent to the oxidizing agent

When molten magnesium chloride is electrolysed using graphite electrodes what are the products?

	Product at cathode (negative electrode)	Product at anode (positive electrode)
Α	magnesium	chlorine
В	chlorine	magnesium
С	magnesium ions	chloride ions
D	chloride ions	magnesium ions

Use the information given about four reactions of metals to determine the order of reactivity from most reactive to least reactive

$$W(s) + X^{2+}(aq) \rightarrow W^{2+}(aq) + X(s)$$

$$Y(s) + W^{2+}(aq) \rightarrow No Reaction$$

$$X(s) + Y^{2+}(aq) \rightarrow X^{2+}(aq) + Y(s)$$

$$Z(s) + Y^{2+}(aq) \rightarrow No Reaction$$

- A W > Y > X > Z
- $B \times X > W > Z > Y$
- C Z > Y > W > X
- $D \qquad W > X > Y > Z$

Below are three statements about voltaic cells.

- I. A redox reaction takes place which produces electrical energy
- II. At the cathode an oxidation reaction occurs
- III. Electrons move from the anode to the cathode

The correct statements are

- A I and II only
- B I and III only
- c II and III only
- D I, II and III