

## 16.2 Activation Energy

## **Question Paper**

| Course     | DP IB Chemistry                 |
|------------|---------------------------------|
| Section    | 16. Chemical Kinetics (HL only) |
| Торіс      | 16.2 Activation Energy          |
| Difficulty | Medium                          |

| Time allowed: | 60   |
|---------------|------|
| Score:        | /49  |
| Percentage:   | /100 |



## Question la

a)

The decomposition of hydrogen peroxide into water and oxygen occurs at a slow rate with a rate constant of  $k = 6.62 \times 10^{-3}$  mol dm<sup>-3</sup> s<sup>-1</sup> and at a temperature of 290 K.

Using Sections 1 and 2 of the Data Booklet, calculate the activation energy,  $E_a$ , correct to three significant figures and state its units.

The constant,  $A = 3.18 \times 10^{11} \text{ mol}^{-1} \text{ dm}^3$ .

[3 marks]

### **Question 1b**

#### b)

Hydrogen peroxide decomposes to form water and oxygen as shown in the equation below.

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

The table below shows the value of the rate constant at different temperatures for a reaction.

| Rate constant k / s <sup>-1</sup> | ln k | Temperature / K | $\frac{1}{T}$ |
|-----------------------------------|------|-----------------|---------------|
| 0.000493                          |      | 295             |               |
| 0.000656                          |      | 298             |               |
| 0.001400                          |      | 305             |               |
| 0.002360                          |      | 310             |               |
| 0.006120                          |      | 320             |               |

Complete the table by calculating the values of ln k and  $\frac{l}{T}$  at each temperature.



## Question 1c

C)

The results of the experiment can be used to calculate the activation energy,  $E_a$ . Use the results table to plot a graph of  $\ln k$  against  $\frac{1}{T}$ .

[4 marks]

## Question 1d

d)

Using Sections 1 and 2 of the Data Booklet and your graph, calculate a value for the activation energy,  $E_a$ , for this reaction. To gain full marks you must show all of your working.

[4 marks]



#### **Question 2a**

a)

The Arrhenius equation can be represented as  $k = Ae^{-Ea/RT}$  in its exponential form.

State the effect on *k* of an increase in;

- i) The constant, A, (frequency factor)
- ii) Activation energy, Ea
- iii) Temperature, T

[3 marks]

## **Question 2b**

b)

Using Sections 1 and 2 of the Data Booklet, calculate the activation energy,  $E_a$ , of a reaction at 57°C and a rate constant of 1.30 x 10<sup>-4</sup> mol dm<sup>-3</sup> s<sup>-1</sup>. The constant  $A = 4.55 \times 10^{13}$ .

## Question 2c

#### c)

The table below shows how temperature affects the rate of reaction.

| Rate constant k/s <sup>-1</sup> | ln k  | Temperature / K | $\frac{1}{T}$ |
|---------------------------------|-------|-----------------|---------------|
| 2.0 x 10 <sup>-5</sup>          | -10.8 | 278             | 0.00360       |
| 4.7 x 10 <sup>-4</sup>          | -7.7  | 298             | 0.00336       |
| 1.7 x 10 <sup>-3</sup>          | -6.4  | 308             | 0.00325       |
| 5.2x10 <sup>-3</sup>            | -5.3  | 318             | 0.00314       |

Use the results to plot a labelled graph of ln k against  $\frac{1}{T}$ .

|   | <br> | <br> |   | <br> | <br> | <br> | <br> |
|---|------|------|---|------|------|------|------|
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   | <br> | <br> |   | <br> | <br> | <br> |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   | <br> | <br> |   | <br> | <br> | <br> | <br> |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
| H |      |      |   |      |      | <br> | ++++ |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   | <br> | <br> |   | <br> | <br> | <br> | <br> |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   | <br> | <br> |   | <br> |      | <br> |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   | <br> | <br> | _ | <br> | <br> | <br> | <br> |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      | <br> |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      | <br> | ++++ |
|   |      |      |   |      |      |      | ++++ |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
| H | <br> | <br> |   | <br> | <br> | <br> | <br> |
|   |      |      |   |      |      |      | ++++ |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      | ++++ |
|   |      |      |   |      |      | <br> | ++++ |
|   |      |      |   |      |      |      | ++++ |
|   |      |      |   |      |      |      | ++++ |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |
|   |      |      |   |      |      |      |      |

[3 marks]

#### Question 2d

d)

Using Sections 1 and 2 of the Data Booklet and your graph, calculate a value for the activation energy,  $E_a$ , for this reaction.

[4 marks]



#### **Question 3a**

#### a)

Nitrogen dioxide and ozone react according to the following equation.

 $2NO_2(g) + O_3(g) \rightarrow N_2O_5(g) + O_2(g)$ 

Experimental data shows the reaction is first order with respect to  $NO_2$  and first order with respect to  $O_3$ .

State the rate expression for the reaction.

[1mark]

#### **Question 3b**

#### b)

At 30 °C, the initial rate of reaction is  $3.46 \times 10^{-3}$  mol dm<sup>-3</sup> s<sup>-1</sup> when the initial concentration of NO<sub>2</sub> is 0.50 mol dm<sup>-3</sup> and the initial concentration of O<sub>3</sub> is 0.21 mol dm<sup>-3</sup>.

Calculate a value for the rate constant k at this temperature and state its units.

[3 marks]

## Question 3c

C)

Using Sections 1 and 2 of the Data Booklet and your answer from part (b), calculate a value for the activation energy of this reaction at 30 °C.

For this reaction  $ln A = 15.8 \text{ mol}^{-1} \text{ dm}^3$ .

[4 marks]

## **Question 3d**

d) The relationship between the rate constant and temperature is given by the Arrhenius equation,  $k = Ae^{-\frac{Ea}{RT}}$ 

State how temperature affects activation energy.

[1 mark]

#### Question 4a

a)

A common relationship exists between temperature and rate.

What temperature change is associated with a doubling of rate?

[1mark]

## **Question 4b**

b) An Arrhenius plot of ln k against  $\frac{1}{T}$  for the reaction between A (g) and B (g) at different temperatures is shown in **Figure 1** below.



The equation of the line of best fit was found to be:

$$\ln k = -6154 \left(\frac{1}{T}\right) - 8.2$$

Calculate the activation energy,  $E_a$ , for the reaction between A (g) and B (g).

[2 marks]

#### Question 4c

c) Define the Arrhenius constant, A.

[2 marks]

## **Question 4d**

d) Using the Arrhenius plot, calculate an approximate value for the constant, A.

#### Page 8 of 11



[2 marks]

#### **Question 5a**

a) The graph of  $\ln k$  against  $\frac{1}{T}$  for a general reaction is shown.



Sketch the expected line for a different reaction with a higher activation energy.

[1mark]

#### Question 5b

b) A graph of ln *k* against  $\frac{1}{T}$  for another general reaction is shown.



Sketch the expected line for the **same** reaction with an added catalyst.

#### **Question 5c**

C)

Rate constant data for the reaction of hydrogen and iodine at two different temperatures is shown in the table below.

 $\mathsf{H}_2(\mathsf{g}) + \mathsf{I}_2(\mathsf{g}) \mathop{\rightarrow} 2\mathsf{HI}(\mathsf{g})$ 

#### Table 1

| Experiment | Temperature / KRate constant, $k$ / mol dm <sup>-3</sup> s <sup>-1</sup> |                         |
|------------|--------------------------------------------------------------------------|-------------------------|
| 1          | 599                                                                      | 5.40 x 10 <sup>-4</sup> |
| 2          | 683                                                                      | 2.80 x 10 <sup>-2</sup> |

Using Sections 1 and 2 of the Data Booklet, calculate the activation energy, in kJ mol<sup>-1</sup>, for the reaction.

[3 marks]

## Question 5d

#### d)

Using the data from experiment 1 and Sections 1 and 2 in the Data Booklet, calculate a value for the constant, A.

#### Table 2

| Experiment | Temperature / K | Rate constant, $k$ / mol dm <sup>-3</sup> s <sup>-1</sup> |  |  |  |
|------------|-----------------|-----------------------------------------------------------|--|--|--|
| 1          | 599             | 5.40 x 10 <sup>-4</sup>                                   |  |  |  |
| 2          | 683             | 2.80 x 10 <sup>-2</sup>                                   |  |  |  |



© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 11 of 11