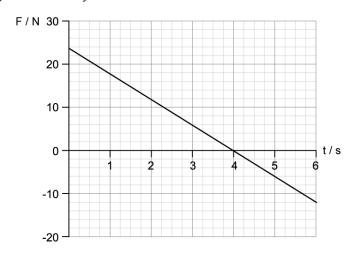


2.4 Momentum & Impulse Question Paper


Course	DP IB Physics
Section	2. Mechanics
Topic	2.4 Momentum & Impulse
Difficulty	Medium

Time allowed: 20

Score: /10

Percentage: /100

A force acts on a mass of 5.0 kg and it is initially at rest.

What is the time taken for the mass to reach an acceleration of $2 \, \text{m s}^{-2}$?

- A. 2.50 s
- B. 2.20 s
- C. 2.25 s
- D. 2.00 s

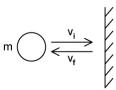
Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 2

A body of mass 3M at rest explodes into two pieces of mass 2M and M.

What is the ratio
$$\frac{\textit{kinetic energy of } 2M}{\textit{kinetic energy of } M}$$
 and $\frac{\textit{momentum of } 2M}{\textit{momentum of } M}$?

	kinetic energy of 2M kinetic energy of M	momentum of 2M momentum of M
Α.	$\frac{1}{2}$	-1
В.	1	-1
C.	$\frac{1}{4}$	2
D.	$\frac{1}{2}$	-2


[1 mark]

Question 3

Which of the following is an elastic collision?

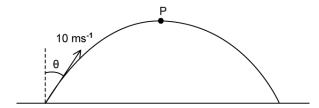
- A. A ball dropped from a height and bouncing up to a lower height
- B. Two railway trucks colliding and they link together
- C. Two gas molecules collide and a bond is formed between them
- $\hbox{D. Two gas molecules collide and then travel perpendicular to each other}\\$

A ball of mass m travels horizontally and strikes a vertical wall with a speed of v_i ms⁻¹. It then rebounds horizontally at speed v_f ms⁻¹. The ball is in contact with the wall for time Δt .

What is if the ball rebounds after an impulse of magnitude 1?

$$\mathbf{A.} \qquad \mathbf{V_{final}} = \frac{1 + \mathbf{V_{initial}}}{m}$$

B.
$$V_{final} = \frac{1 + mV_{initial}}{m}$$


$$C. \qquad V_{final} = \frac{1 - mV_{initial}}{m}$$

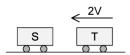
D.
$$v_{final} = \frac{1 - v_{initial}}{m}$$

[1 mark]

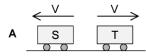
Question 5

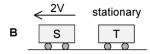
A stone of mass 0.5 kg is thrown with an initial speed of 10 m s⁻¹ at an angle θ to the vertical. P is the highest point of the motion and air resistance is negligible.

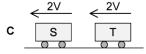
What is the momentum of the stone at P?

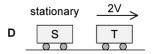

- A. $5 \sin \theta$
- B. 5
- $C.5\cos\theta$
- D. 0

Head to <u>savemy exams.co.uk</u> for more awe some resources

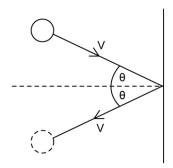

Question 6


A truck T moving horizontally collides with an identical truck S that is at rest.




T strikes S with speed 2v.

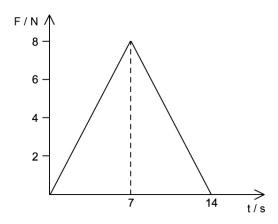
What is a possible outcome of the collision?



[1 mark]

Question 7

A ball of mass m strikes a vertical wall with a speed v at an angle of θ to the wall. The ball rebounds at the same speed and angle in time t. What is the magnitude of the impulse on the wall?


A. zero

B.2mv

C. $2mv \sin \theta$

D. $2mv\cos\theta$

A ball of mass $4.0 \, \text{kg}$, initially at rest, is acted on by a force F which varies with t.

What is the velocity of the ball after 14 s?

- $A.7 \, \text{m s}^{-1}$
- $B.56 \, m \, s^{-1}$
- $C.14 \, m \, s^{-1}$
- $D.28 \, m \, s^{-1}$

[1 mark]

Question 9

Which of the following is true for momentum and impulse?

- A. Momentum is conserved in an inelastic collision
- B. Impulse is the momentum
- C. The direction in which an object is travelling in doesn't affect its impulse
- D. A heavier object always experiences a greater impulse than a lighter one

Two balls m and 2m collide elastically with speeds v and 2v respectively. After the collision, they both move in opposite directions.

What speed does the 2m ball move with after the collision?

A.
$$\sqrt{\frac{5}{2}}$$
 v

B.
$$\frac{5}{2}$$
 v

$$c.\sqrt{\frac{1}{2}}v$$

$$D.\frac{1}{2}v$$