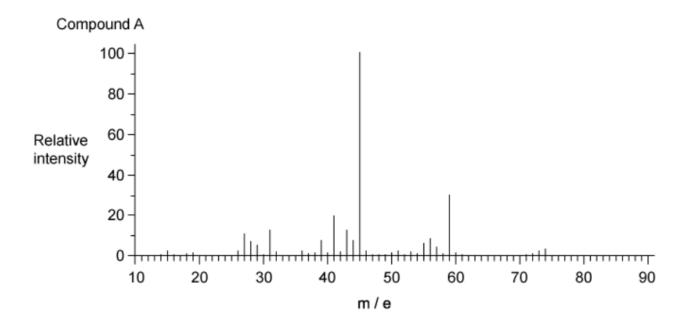
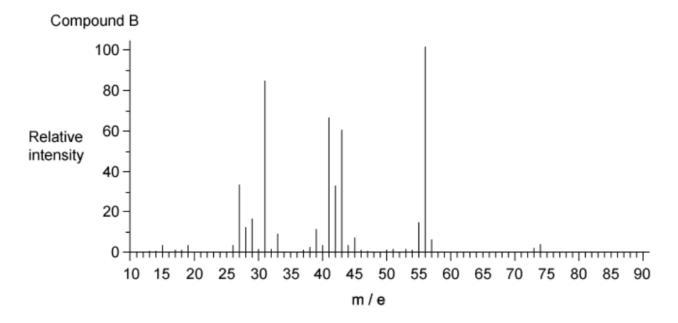


11.1 Spectroscopic Identification

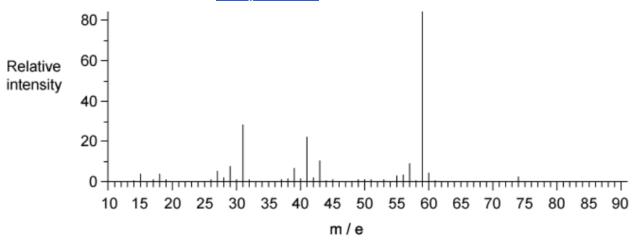
Question Paper

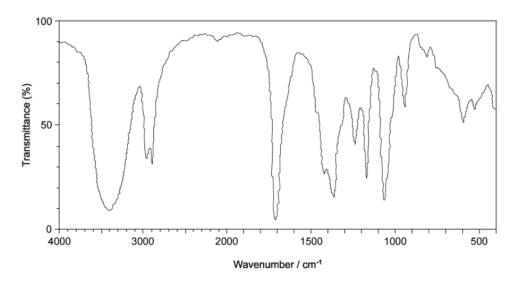

Course	DP IB Chemistry
Section	11. Measurements & Data Processes
Topic	11.1 Spectroscopic Identification
Difficulty	Hard


Time allowed: 20

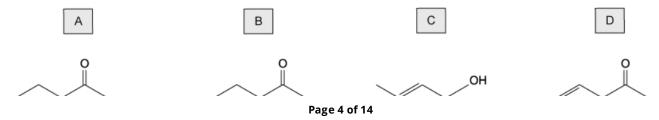
Score: /10

Percentage: /100


The mass spectra of three compounds A, B and C are shown below.



What evidence from the spectra of the three compounds A, B and C, suggests they could be isomers?


- A all show a molecular ion peak at 74
- **B** all show a molecular ion peak at 13
- **C** all show a molecular ion peak at 73
- **D** all show a molecular ion peak at 33

The infrared spectrum below shows an unknown compound.

bond	wavenumber range/ cm ⁻¹
C-O; hydroxyl, ester	1040 – 1300
C=C; aromatic compound, alkene	1500 - 1680
C=O amide carbonyl, carboxyl ester	1640 – 1690 1670 – 1740 1710 - 1750
C≡N; nitrile	2200 – 2250
C-H; alkane	2850 – 2950
N-H; amine, amide	3300 – 3500
O-H; carboxyl hydroxyl	2500 – 3000 3200 - 3600

Which compound could have produced the infrared spectrum?



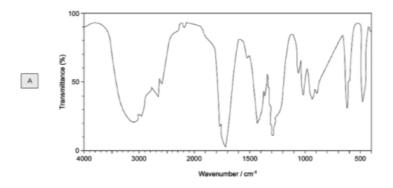
 $Head to \underline{save my exams.co.uk} for more awe some resources$

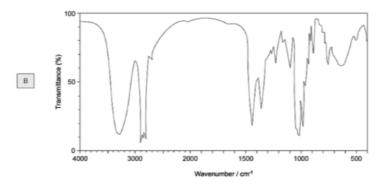
OH HO V

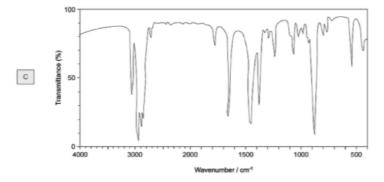
The diagram shows an infrared spectrum of a compound.

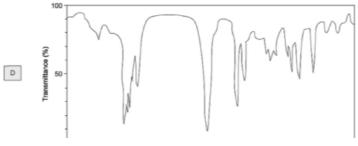
bond	wavenumber range/ cm ⁻¹
C-O; hydroxyl, ester	1040 – 1300
C=C; aromatic compound, alkene	1500 - 1680
C=O amide carbonyl, carboxyl ester	1640 - 1690 1670 - 1740 1710 - 1750
C≡N; nitrile	2200 – 2250
C-H; alkane	2850 – 2950
N-H; amine, amide	3300 – 3500
O-H; carboxyl hydroxyl	2500 - 3000 3200 - 3600

Which compound would give this spectrum?


A butanoic acid




 $Head to \underline{savemy exams.co.uk} for more awas ome resources$


		 J	
В	butanal		
С	butan-1-ol		
D	1-bromobutane		

Which of the following infrared spectra could show a carboxylic acid?

Page 8 of 14

$Head to \underline{save my exams. co.uk} for more a we some resources$

bond	wavenumber range/ cm ⁻¹
C-O; hydroxyl, ester	1040 – 1300
C=C; aromatic compound, alkene	1500 - 1680
C=O amide carbonyl, carboxyl ester	1640 – 1690 1670 – 1740 1710 - 1750
C≡N; nitrile	2200 – 2250
C-H; alkane	2850 – 2950
N-H; amine, amide	3300 – 3500
O-H; carboxyl hydroxyl	2500 – 3000 3200 - 3600

[1 mark]

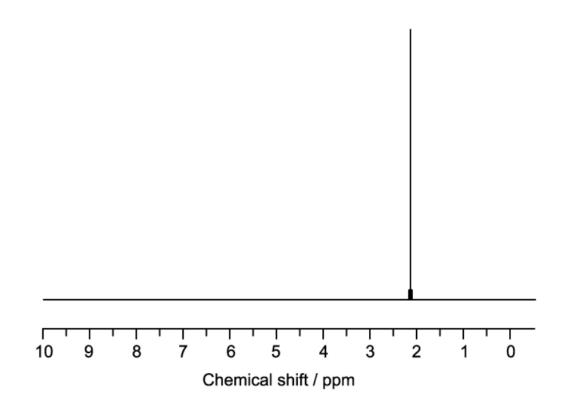
Question 5

A periodic table is needed for this question

A compound XF_n is a fluoride of another halogen, X, and it is known that n > 1. The highest m/e peak in the mass spectrum of XF_n is assigned to the parent ion and comes as a single peak at m/e = 222.

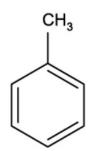
Which of the following statements is **incorrect**?

- A n = 5
- **B** the compound could contain bromine
- **C** there are no isotopes of X or F
- **D** the compound is a fluoride of iodine


An organic compound is analysed by mass spectrometry and infrared spectroscopy. The following data is obtained.

mass spectrometry	infrared spectroscopy
molecular ion peak at m/e = 128	sharp peak at 1720 cm ⁻¹
fragment ion peak at m/e = 15	no broad peak around 3200 cm ⁻¹

bond	wavenumber range/ cm ⁻¹
C-O; hydroxyl, ester	1040 – 1300
C=C; aromatic compound, alkene	1500 - 1680
C=O amide carbonyl, carboxyl ester	1640 – 1690 1670 – 1740 1710 - 1750
C≡N; nitrile	2200 – 2250
C-H; alkane	2850 – 2950
N-H; amine, amide	3300 – 3500
O-H; carboxyl hydroxyl	2500 – 3000 3200 - 3600


Which of the following compounds could be consistent with the data given?

What does the 1H NMR spectrum below tell you about a molecule?

- A There is only one isotope of hydrogen present in the molecule
- **B** The molecule is a hydrocarbon
- **C** There is only one hydrogen atom in the molecule
- **D** There is only one hydrogen environment in the molecule

How many peaks would you expect to see in a ¹H NMR spectrum of methylbenzene?

- **A** 3
- **B** 4
- **C** 5
- **D** 6

What is the index of hydrogen deficiency (IHD) for this molecule of aspirin?

- **A** 3
- **B** 4
- **C** 5
- **D** 6

[1 mark]

Question 10

Which molecule has an index of hydrogen deficiency (IHD) = 1?

- A. C₆H₁₀
- B. C₂Br₂
- C. C_4H_9N
- D. C₃H₈O

 $Head to \underline{save my exams.co.uk} for more a we some resources$