

1.9 Further Complex Numbers

Question Paper

Course	DP IB Maths
Section	1. Number & Algebra
Topic	1.9 Further Complex Numbers
Difficulty	Medium

Time allowed: 110

Score: /90

Percentage: /100

Question la

Consider $w = \frac{z_1}{z_2}$, where $z_1 = 2 + 2\sqrt{3}i$ and $z_2 = 2 + 2i$.

a)

Express w in the form w = a + bi.

[3 marks]

Question 1b

b)

Write the complex numbers z_1 and z_2 in the form $re^{\mathrm{i}\,\theta}$, $r\!\geq\!0$, $-\pi\!<\!\theta\!<\!\pi$.

[4 marks]

Question 1c

C)

Express w in the form $re^{i\theta}$, $r \ge 0$, $-\pi < \theta < \pi$.

[3 marks]

Question 2

Solve the equation $z^3 = 27i$, giving your answers in the form a + bi.

[6 marks]

Question 3a

Let
$$z_1 = 6\operatorname{cis}(\frac{\pi}{6})$$
 and $z_2 = 3\sqrt{2}\,e^{\mathrm{i}\left(\frac{\pi}{4}\right)}$.

a)

Giving your answers in the form rcis θ , find

(i)

$$z_{1}^{}z_{2}^{}$$

(ii)

$$\frac{z_1}{z_2}$$
.

[4 marks]

\sim					
<i>(</i>):	IOC	+10	n	- 4	h
wι	ıes	····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J	u

b)

Write z_1 and z_2 in the form $a+b\mathrm{i}$.

[2 marks]

Question 3c

C)

Find $z_1 + z_2$, giving your answer in the form a + bi.

[2 marks]

Question 3d

It is given that z_1^{\ast} and z_2^{\ast} are the complex conjugates of z_1 and z_2 respectively.

d) Find $z_1^* + z_2^*$, giving your answer in the form a+bi.

[2 marks]

Question 4a

Let $z_1 = 2 \operatorname{cis}(\frac{\pi}{3})$ and $z_2 = 2 + 2i$.

a)

Express

(i)

 z_1 in the form a + bi

(ii)

 z_2 in the form $r \mathrm{cis} \theta$

[2 marks]

Question 4b

h١

Find $w_1 = z_1 + z_2$, giving your answer in the form a + bi.

[2 marks]

Question 4c

c)

Find $w_2 = z_1 z_2$, giving your answer in the form $r \operatorname{cis} \theta$.

[3 marks]

\sim	Jesti	!	A -
(,)	IDCT	ınn	40

d)

Sketch \boldsymbol{w}_1 and \boldsymbol{w}_2 on a single Argand diagram.

[2 marks]

Question 5a

It is given that that $z_1=2\mathrm{e}^{\mathrm{i}\left(rac{\pi}{3}
ight)}$ and $z_2=3\mathrm{cis}\left(rac{\mathrm{n}\pi}{12}
ight)$, $n\in\mathbb{Z}^+$.

a)

Find the value of $z_1 z_2$ for n = 3.

[3 marks]

Question 5b

b)

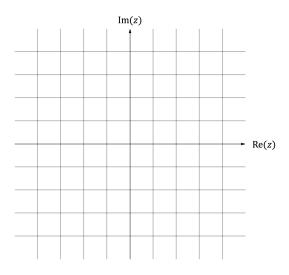
Find the least value of n such that $z_1^{}z_2^{}\in\mathbb{R}^{\,+}.$

[3 marks]

Question 6a

Consider the complex number $w = \frac{z_1}{z_2}$ where $z_1 = 3 - \sqrt{3}i$ and $z_2 = 2cis\left(\frac{2\pi}{3}\right)$.

a)


Express w in the form $r cis \theta$.

[5 marks]

Question 6b

b)

Sketch $\boldsymbol{z}_{\!1},\,\boldsymbol{z}_{\!2}$ and \boldsymbol{w} on the Argand diagram below.

[3 marks]

Question 6c

c)

Find the smallest positive integer value of n such that w^n is a real number.

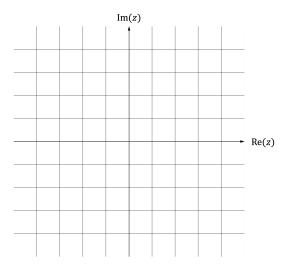
[2 marks]

Question 7a

Consider the complex number $z = -1 + \sqrt{3}i$.

(a)

Express z in the form r c is θ , where r > 0 and $-\pi < \theta \le \pi$.


 $Head to \underline{save my exams.co.uk} for more a we some resources$

	[4 marks]
Question 7b	
(b)	
Find the three roots of the equation $z^3=-1+\sqrt{3}i$, expressing your answers in the form r cis θ , where $r>0$ and $-r$	
	[4 marks]
Question 8a Consider the equation $z^4-1=15$, where $z\in\mathbb{C}$.	
(a) Find the four distinct roots of the equation, giving your answers in the form $a+b{ m i}$, where $a,b\in\mathbb{R}$.	
	[4 marks]

Question 8b

(b)

Represent the roots found in part (a) on the Argand diagram below.

[2 marks]

Question 8c

(c)

Find the area of the polygon whose vertices are represented by the four roots on the Argand diagram.

[2 marks]

Question 9a

Consider the complex numbers $w = 3\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ and $z = 3 - \sqrt{3}i$.

(a)

Write w and z in the form r cis θ , where r > 0 and $-\pi < \theta \le \pi$.

[4 marks]

Question 9b

(b)

Find the modulus and argument of ZW.

[2 marks]

Question 9c

(c)

Write down the value of zw.

[2 marks]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Let z = 12 + 16i, where $a, b \in \mathbb{R}$.

a)

Verify that 4 + 2i and -4 - 2i are the second roots of z.

[2 marks]

Question 10b

b)

Hence, or otherwise, find two distinct roots of the equation $w^2 + 4w + (1 - 4i) = 0$, where $w \in \mathbb{C}$. Give your answer in the form a + bi, where $a, b \in \mathbb{R}$.

[4 marks]

Question 11a

The complex numbers $\omega_1 = 3$ and $\omega_2 = 2 - 2i$ are roots of the cubic equation $\omega^3 + p\omega^2 + q\omega + r = 0$, where $p, q, r \in \mathbb{R}$.

a)

Write down the third root, $\it{W}_{\rm{3}}$, of the equation.

[1 mark]

Question 11b

h)

Find the values of p, q and r.

 $Head to \underline{save my exams.co.uk} for more awe some resources$

[4 marks]

Question 11c

C)

Express w_1 , w_2 and w_3 in the form $r \operatorname{cis} \theta$.

[4 marks]