5.1 Energetics

Question Paper

Course	DP IB Chemistry
Section	5. Energetics / Thermochemistry
Topic	5.1 Energetics
Difficulty	Easy

Time allowed: 50

Score: /35

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question la

a)

Chemical reactions can be exothermic or endothermic. State which type of reaction is indicated by a decrease in temperature.

[1 mark]

Question 1b

b)

State the type of reaction in which the energy of the system decreases.

[1 mark]

Question 1c

C)

The reaction of propane with oxygen is represented by the following equation

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$
 $\Delta H = -2219 \text{ kJ mol}^{-1}$

State the classification of the enthalpy change is occurring in this reaction.

[1 mark]

Question 1d

d)

Define the term enthalpy of formation, ΔH_f , and state the standard conditions.

[6 marks]

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

Qu	est	ion	2a
Vи	COL		_ _ a

a)

Define the term enthalpy change of reaction, ΔH_r .

[2 marks]

Question 2b

b)

The equations below can be identified as any of the following enthalpy changes. Identify the enthalpy change for each reaction.

- Enthalpy of reaction, ΔH_r
- Enthalpy of formation, ΔH_f
- Enthalpy of combustion, ΔH_C
- Enthalpy of neutralisation, ΔH_{neut}

$$C_2H_5OH(I) + O_2(g) \rightarrow CO_2(g) + H_2O(I)$$
.....

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(I)$$

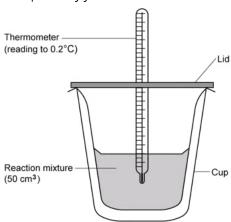
Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 2c

C)

Hydrochloric acid, HCI (aq), and sodium hydroxide, NaOH (aq), react as follows

 $HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(I)$ $\Delta H_r = -57.9 \text{ kJ mol}^{-1}$


Determine the enthalpy change, in kJ, when $25\,\mathrm{cm^3}$ of $0.5\,\mathrm{mol}\,\mathrm{dm^{-3}}$ hydrochloric acid reacts with $25\,\mathrm{cm^3}$ of $0.5\,\mathrm{mol}\,\mathrm{dm^{-3}}$ sodium hydroxide. Give your answer to $2\,\mathrm{decimal}$ places.

[2 marks]

Question 3a

a)

A student set up apparatus for a calorimetry experiment as shown below. Suggest suitable materials for the lid and cup. Justify your answer.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 3b

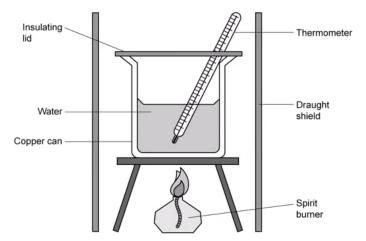
b)

The student added excess zinc powder to the cup with $50.0 \, \text{cm}^3$ of $1.0 \, \text{mol dm}^{-3}$ copper(II) sulfate solution in a calorimeter. The reaction equation was as follows:

$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$

The maximum temperature rise was 22.6 °C. Using section 1 of the data booklet, determine the enthalpy of reaction, in kJ. Give your answer to 2 significant figures.

Calculate the number of moles of copper(II) sulfate solution


Calculate the enthalpy change of the reaction

[3 marks]

Question 3c

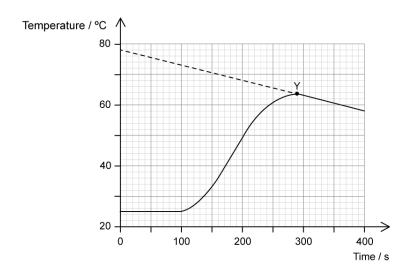
c)

Another calorimetry experiment was set up to determine the enthalpy of combustion for ethanol.

Define standard enthalpy of combustion, ΔH_c .

[2 marks]

$Head to \underline{save my exams.co.uk} for more awe some resources$


Question 3d
d) 0.61 g of ethanol, C ₂ H ₅ OH, was burned in a spirit burner and used to heat 100 cm ³ of water in a copper calorimeter. The temperature of the water rose by 40 °C.
i) Using section 1 and 2 in the data booklet determine the energy, in joules, for this reaction.
ii) Convert your answer to part (i) into kilojoules.
[2 marks
Question 3e
e) Calculate the enthalpy change for the combustion of ethanol.
Determine the moles of ethanol

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 4a

a)

 $4.00\,\mathrm{g}$ of powdered iron was reacted with $25.0\,\mathrm{cm}^3$ of $2.00\,\mathrm{mol}\,\mathrm{dm}^{-3}$ copper(II) sulfate solution in an insulated beaker. Temperature was plotted against time.

Estimate the time at which the powdered iron was added to the beaker.

[1 mark]

Question 4b

h)

A student added point Y to the graph.

i)

State what point Y indicates on the graph.

ii)

Assuming there is no heat loss in the experiment and the heat change is instantaneous, using the graph, determine the total temperature change.

 $Head to \underline{save my exams. co.uk} for more a we some resources$

Question 4c

c)

Explain why the student has recorded the temperature of the copper sulfate solution for a period of time before adding the iron powder.

[1 mark]

Question 4d

The student used the equation $q = mc\Delta T$ to calculate the enthalpy change for the reaction that took place in the beaker. State the value that the student should use for m.

[1 mark]