3.9 Modelling with Vectors

Question Paper

Course	DP IB Maths
Section	3. Geometry & Trigonometry
Topic	3.9 Modelling with Vectors
Difficulty	Medium

Time allowed: 90

Score: /68

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question la

Two ships A and B are travelling so that their position relative to a fixed point O at time t, in hours, can be defined by the position vectors $\mathbf{r_A} = (2-t)\mathbf{i} + (4+3t)\mathbf{j}$ and $\mathbf{r_B} = (t-8)\mathbf{i} + (29-2t)\mathbf{j}$.

The unit vectors \boldsymbol{i} and \boldsymbol{j} are a displacement of 1 km due East and North of O respectively.

a)

Find the coordinates of the initial position of the two ships.

[2 marks]

Question 1b

b)

Show that the two ships will collide and find the time at which this will occur.

[3 marks]

Question 1c

c)

Find the coordinates of the point of collision.

 $Head to \underline{save my exams.co.uk} for more awe some resources$

Question 2a

Question 2a	
A car, moving at constant speed, takes 4 minutes to drive in a straight line from point $A(-3, 5)$ to point $B(7, 11)$.	
At time t , in minutes, the position vector of the car relative to the origin can be given in the form $p = a + tb$.	
a) Find the vectors ${\it a}$ and ${\it b}$.	
	[3 marks]
Question 2b	
A cat has decided to take a nap at point $X(4, 9)$.	
b)	
Show that the cat does not lie on the route along which the car drives.	
	[3 marks]
Question 2c	
Find the shortest distance between the car and the cat during the movement of the car.	[
	[6 marks]

Question 3a

A bird takes off from a perch and flies at a constant speed in a straight line. The position of the bird in flight relative to its nest, (east, north and above/below the nest), can be described by the vector equation

$$r_1 = \begin{pmatrix} 18 \\ 4 \\ -2 \end{pmatrix} + t \begin{pmatrix} 272 \\ -360 \\ 225 \end{pmatrix}.$$

All displacements are given in metres and t is the time in minutes.

(a) Find the distance between the perch that the bird took flight from and its nest.

[2 marks]

Question 3b

(b) Find the speed at which the bird is travelling. Give your answer in kmh^{-1} .

[3 marks]

Question 3c

A second bird takes off at the same time as the first bird from a different perch and also flies in a straight line at a constant speed. The flight of the second bird, relative to the same nest, can be described by the vector equation

$$r_2 = \begin{pmatrix} 12 \\ -8 \\ -3 \end{pmatrix} + t \begin{pmatrix} -187 \\ -438 \\ 80 \end{pmatrix}.$$

(c) Find the distance between the two birds after 8 minutes of flying.

[4 marks]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 4a

A drone travels in a straight line and at a constant speed. It moves from an initial point A(4,5,-2) to a second point B(7,-1,0). The person controlling the drone is located at C(2,3,2).

The x, y and z directions are due east, due north and vertically upwards respectively with all distances in metres.

(a) Write down an equation for the line along which the drone travels.

[2 marks]

Question 4b

At some point P on its flight, the drone is vertically level with the person controlling the drone.

(b) Find the coordinates of point P.

[3 marks]

Question 4c

(c) Find the distance between P and the person controlling the drone.

Question 5a

Two snails are taking part in a snail race starting from the same point and moving in a straight line. The position of the first snail S_1 is given by the equation

$$r = {5 \choose 1} + t {1 \choose -2},$$

The displacement of the second snail S_2 , relative to the finish point, is given by

$$s(t) = 8 - 3t^2.$$

All distances are in centimetres and time is in minutes.

(a) Write down the distance that the snails race.

[1 mark]

Question 5b

(b) Find an expression for the velocity of S_2 at time t.

[2 marks]

Question 5c

(c) Find the displacement of S_2 from the finishing point when the speed of the two snails is equal.

[5 marks]

Question 6a

A ball is pushed off the top of a 150 m tall skyscraper with an initial velocity of $\binom{1.5}{0}$ ms⁻¹.

The point at which the ball is pushed can be considered the origin of a Cartesian coordinate system. It is assumed that any effects of air resistance will be negligible and $g = 9.81 \ ms^{-2}$.

(a) Find the velocity vector at time t.

[2 marks]

Question 6b

(b) displacement vector of the ball at time t.

\sim			
	est	ıor	ነ ሉር
W U	C 3(101	$\cdot \cdot \cdot$

(c)	Find	the	time	at	which	the	ball	reaches	the	ground.
										U

[2 marks]

Question 6d

(d) Find the total horizontal distance travelled by the ball.

Question 7a

Two aeroplanes are observed flying in straight lines, with respect to the airport located at (0,0,0). The flightpaths l_A and l_B , of aeroplanes A and B respectively, can be defined by:

$$l_A: \mathbf{r} = \begin{pmatrix} 6 \\ 3 \\ -2 \end{pmatrix} + \alpha \begin{pmatrix} -1 \\ -4 \\ 3 \end{pmatrix}$$

$$l_B: \mathbf{s} = \begin{pmatrix} -7 \\ -1 \\ 5 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

where α and β is the time elapsed in minutes since the start of the observation for each aeroplane. All distances are in kilometres.

The flightpaths intersect at point P.

(a) Find the values of α and β and hence show that the two planes will not collide.

[4 marks]

Question 7b

- (b) Find
 - (i) the coordinates of the point at which the flightpaths intersect,
 - (ii) the distance between the airport and the point P.

[4 marks]

Question 8a

A particle starts from a position at (0,0) and moves such that its velocity at time t, in seconds, is given by $v = \binom{2e^{3t}}{e^{3t}-4}$. All distances are in metres.

(a) Find an expression for the acceleration of the particle at time t.

[2 marks]

Question 8b

(b) Find an expression for the position of the particle at time t.

[4 marks]

· · · · · · · · · · · · · · · · · · ·		
Headtosavemvexams.	co.ukformore	awesome resources

\bigcirc	-	+10	n	8c
Ψu	C 5	CIC	ווע	OC

(c) Find the value of t such that the speed of the particle is 6 ms⁻¹.

[3 marks]