

1.5 Further Proof & Reasoning

Question Paper

Course	DP IB Maths
Section	1. Number & Algebra
Торіс	1.5 Further Proof & Reasoning
Difficulty	Very Hard

Time allowed:	90
Score:	/67
Percentage:	/100

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 1

Prove that there are no real values of k such that the equation $kx(1 - x) = 3x^2 - 1$ has no real solutions.

[4 marks]

Question 2

Prove that $2^{n+2} + 3^{3n}$ is divisible by 5 for $n \in \mathbb{Z}$, $n \ge 0$.

[6 marks]

Question 3

Prove that there are an infinite number of prime numbers.

[4 marks]

Question 4

523 and 541 are prime numbers.

Prove by exhaustion that these are consecutive prime numbers.

[3 marks]

Question 5

Three of the four statements below are false.

Eliminate the false statements by providing a counter example and thus deduce the true statement.

(i) (x-1)² ≠ (x+1)², x ∈ ℝ.
(ii) Every (4n) th triangular number is even, n ∈ ℕ.
(iii) 2 ln x > ln 2x, x ∈ ℝ, x > 0.
(iv) The product of any two distinct positive integers is greater than their sum.

[3 marks]

Question 6

Prove that the equation $5x^4 + 15x^3 - 20x^2 - 4 = 0$ has no integer solutions.

[5 marks]

Question 7a

The function f(n) is given as $f(n) = n^3 + n^2 + 17$ where *n* is an integer.

(a) Find f(1), f(2) and f(3).

[2 marks]

Question 7b

(b) Prove that f(n) is not prime for all values of n.

Page 4 of 9

Head to <u>savemyexams.co.uk</u> for more awesome resources

[2 marks]

Question 8a

(a) Write down a, b, c and d from smallest to largest, given a, b, c, $d \in \mathbb{R}$ and c > d, a < dand a > b.

[2 marks]

Question 8b

(b) Write down p, q, r and s from smallest to largest, given $p, q, r, s \in \mathbb{R}$ and

p > q r - s < q - pp + q = r + s.

[3 marks]

Question 8c

(c) Prove $\frac{x}{1+x} < \frac{x}{1+y}$, $x, y \in \mathbb{R}$, given $0 \le x \le y$.

[3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 9a

(a) Show that the derivative of $y = xe^{-x}$ is

$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{-x}(1-x).$$

[3 marks]

Question 9b

(b)

Prove, by mathematical induction, that for $n \ge 1$,

$$\frac{d^n}{dx^n} = e^{-x} [(-1)^{n-1} n + (-1)^n x]$$

[7 marks]

Question 10

Given that the graph of $y = x^4 - 10x^3 + 37x^2 - 60x + 36$ touches the *x*-axis at the point with coordinates (2,0), prove that $y \ge 0$ for all real values of *x*.

[6 marks]

Question 11 Prove that $[r(\cos \theta - i\sin \theta)]^n = r^n [\cos(n\theta) - i\sin(n\theta)]$, for all $n \in \mathbb{Z}^+$.

[7 marks]

Question 12

Proof by Induction that

$$\sum_{r=1}^{n} r(r^2 - 6) = \frac{1}{4} n(n+1)(n+4)(n-3)$$

for all positive integer values of n.

[7 marks]

Page 8 of 9

Page 9 of 9