

5.2 Further Differentiation

Question Paper

Course	DP IB Maths
Section	5. Calculus
Topic	5.2 Further Differentiation
Difficulty	Medium

Time allowed: 90

Score: /71

Percentage: /100

Question 1

Differentiate $\frac{5x^7}{\sin 2x}$ with respect to x.

[4 marks]

Question 2a

Find $\frac{dy}{dx}$ for each of the following:

(a)
$$y = \cos(x^2 - 3x + 7) + \sin(e^x)$$

[4 marks]

Question 2b

$$(b) y = \ln(2x^3)$$

[3 marks]

Question 3a

Differentiate with respect to x, simplifying your answers as far as possible:

(a)
$$(4\cos x - 3\sin x)e^{3x-5}$$

[3 marks]

Question 3b

(b)
$$(x^3 - 4x^2 + 7) \ln x$$

Question 4

A curve has the equation $y = e^{-3x} + \ln x$, x > 0.

Find the gradient of the normal to the curve at the point $(1, e^{-3})$, giving your answer correct to 3 decimal places.

[4 marks]

Question 5

Find the equation of the tangent to the curve $y = e^{3x^2 + 5x - 2}$ at the point (-2, 1), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

[4 marks]

Question 6

Let
$$f(x) = \frac{g(x)}{h(x)}$$
, where $g(2) = 4$, $h(2) = -1$, $g'(2) = 0$ and $h'(2) = 2$.

Find the equation of the tangent of f at x = 2.

[6 marks]

Question 7a

A curve has the equation $y = x^3 - 12x + 7$.

(a) Find expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

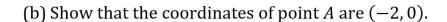
_				_	
Qι	10	et:		n /	'n
w	ィー	JU	ıvı		\sim

(b) Determine the coordinates of the local minimum of the curve.

Question 8a

The diagram below shows part of the graph of y = f(x), where f(x) is the function defined by

$$f(x) = (x^2 - 1) \ln(x + 3), x > -3$$



Points A, B and C are the three places where the graph intercepts the x-axis.

(a) Find f'(x).

[4 marks]

Question 8b

[2 marks]

Question 8c

(c) Find the equation of the tangent to the curve at point *A*.

[3 marks]

Question 9a

Let
$$f(x) = x^2 e^x$$
.

(a) Find f'(x).

Question 9b

(b) Find f''(x).

[3 marks]

Question 9c

(c) Find the exact x coordinates of the points of inflection for the graph of f.

[4 marks]

Question 9d

(d) Find $\lim_{x\to -2} x^2 e^x$.

[1 mark]

Question 10a

Let
$$f(x) = 2e^{2cosx}$$
, where $-\pi \le x \le \pi$.

(a) Find the number of points containing a horizontal tangent.

[1 mark]

Question 10b

(b) Show algebraically that the gradient of the tangent at $x = \frac{\pi}{2}$ is -4.

[4 marks]

Question 10c

(c) State the gradient of the tangent at $x = \frac{3\pi}{2}$.

[1 mark]

Question 10d

It can be found that as the function, f, undergoes a transformation f(kx), the number of stationary points found between $-\pi \le x \le \pi$ increases.

(d) Find the number of stationary points on f after a transformation of f(2x) and hence, state the general rule representing the number of stationary points in terms of k where $k \in \mathbb{Z}^+$.

[3 marks]

Question 11

Let
$$f(x) = \sin x$$
 and $g(x) = \sin^2 x$, for $0 \le x \le 2\pi$.

Solve
$$f'(x) = g'(x)$$
.

[5 marks]

 $Head to \underline{save my exams.co.uk} for more a we some resources$