

8.1 Theories & Reactions of Acids & Bases Question Paper

Course	DP IB Chemistry
Section	8. Acids & Bases
Topic	8.1Theories & Reactions of Acids & Bases
Difficulty	Hard

Time allowed: 20

Score: /10

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 1

Some species may be classified as amphiprotic, some as amphoteric and some as both. Which of the following applies to HPO_4^{2-} ?

- A. Amphiprotic but not amphoteric
- B. Amphoteric but not amphiprotic
- C. Amphiprotic and amphoteric
- D. Neither amphiprotic nor amphoteric

[1 mark]

Question 2

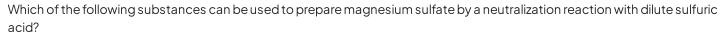
The aromatic compound phenol, C_6H_5OH , behaves as a weak acid, due the presence of a hydroxyl group on the benzene ring. What is the correct formula of the conjugate base formed when phenol dissociates?

- $A. C_6 H_4^--OH$
- B. C₆H₅-OH₂+
- $C. C_6 H_5 O^-$
- D. C₆H₆+-OH

[1 mark]

Question 3

What is the sum of the coefficients when the following acid-base equation is balanced?


$$Al_2(CO_3)_3(s) + HNO_3(aq) = Al(NO_3)_3(aq) + H_2O(l) + CO_2(g)$$

- A. 6
- B.7
- C.14
- D.15

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

Question 4

I. Mg

II. MgO

III. MgCO₃

A. I and II only

B. I and III only

C. II and III only

 $D.\,I,\,II\,and\,III$

[1 mark]

Question 5

Phosphoric acid is a **polyprotic** acid and can produce amphiprotic species when it dissociates. Which of the following species is amphiprotic?

I. HPO₄2-

II. H₂PO₄-

III. PO₄³-

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

Question 6

Use the following reactions to answer the question below:

$$H_2O(I) + F^{-}(aq) = HF(aq) + OH^{-}(aq)$$

$$H_2O(1) + HNO_3(aq) \rightarrow H_3O^+(aq) + NO_3^-(aq)$$

$$H_2O(1) + CO_2(g) = H_2CO_3(aq)$$

$$H_2O(aq) + NH_3(aq) = NH_4OH(aq)$$

Which of the following statements is true?

- A. HNO_3 and H_2O both act as acids once
- B. H₂O is shown acting as a Bronsted-Lowry acid only
- C. H₂O reacts as an acid twice
- $D.H_2O$ is shown as a diprotic acid

[1 mark]

Question 7

Which species are Bronsted-Lowry acids in the reaction shown?

$$H_2PO_4^-(aq) + CN^-(aq) = HCN(aq) + HPO_4^{2-}(aq)$$

- A. HCN and $H_2PO_4^-$
- B. HCN and CN-
- C. $H_2PO_4^-$ and HPO_4^{2-}
- D. HCN and HPO_4^{2-}

[1 mark]

Question 8

Which of the following solutions will react with a strip magnesium ribbon?

- A. Sodium hydrogencarbonate
- B. Sodium hydrogensulfate
- C. Ammonia
- D. Limewater

Question 9

Which substance reacts with ammonia but is not a Brønsted-Lowry acid?

- A. HCI
- B. CH₃COOH
- $C.BF_3$
- D. CF₃COOH

[1 mark]

Question 10

Which row shows the correct systematic name of the acid?

	Formula	Name
Α	HCIO ₃	chloric(V) acid
В	H ₂ SO ₃	hydrogensulfate(VI) acid
С	H ₃ PO ₃	phosphoric(V) acid
D	HNO ₂	nitrous acid