

1.9 Further Complex Numbers

Question Paper

Course	DP IB Maths
Section	1. Number & Algebra
Торіс	1.9 Further Complex Numbers
Difficulty	Very Hard

Time allowed:	100
Score:	/82
Percentage:	/100

SaveMyExams

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question la

Consider the equation $pz^3 + qz^2 + 8p^3z + 5q = 0$, where $z \in \mathbb{C}$, $p \in \mathbb{R}$.

(a)

Given that one of the distinct roots is $z_1 = \frac{5}{2}$, find

(i)

the values of p and q

(ii)

the roots z_1 and z_2 , giving your answers in the form a + bi, where $a, b \in \mathbb{R}$.

[6 marks]

Question 1b

On an Argand diagram $z_1^{},\,z_2^{}$ and $z_3^{}$ are represented by the points A, B and C respectively.

(b) Find the area of the triangle ABC.

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2

Consider the complex numbers z and w, where $z = \sqrt{3} - i$, $\operatorname{Im}\left(\frac{z^2}{w}\right) = 0$, $\left|\frac{z^2}{w}\right| = \frac{1}{2}|z|$.

Use geometrical reasoning to find the two possibilities for w, giving your answers in exponential form.

[4 marks]

Question 3

Consider the equation $z^4 - 5az^3 + 25az^2 - 20abz + 24ab = 0$, where $a, b \in \mathbb{Z}$ and $z \in \mathbb{C}$.

Given that one root is a + ai and another root is b + bi, find the possible values of a and b.

[8 marks]

Question 4a

Consider the complex number $z = 1 + \sqrt{3}i$.

(a)

Use De Moivre's theorem to find the value of z^3 .

[3 marks]

Question 4b

(b) Use the principle of mathematical induction to prove, for all $n \in \mathbb{N}$, that $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

[5 marks]

Page 4 of 11

Question 4c

(c) Show that the result in part (b) is true for all $n \in \mathbb{Z}$.

[2 marks]

Question 5a

Consider the equation $(z + a)^5 + 1 = 0$, $z \in \mathbb{C}$.

(a)

Given that the product of the roots is 31, find the roots of the equation, expressing your answers in the form $\omega_n = b + e^{i\theta}$, where $b \in \mathbb{R}$ and $\theta > 0$.

[5 marks]

Question 5b

Let S be the sum of the roots found in part (a).

(b)

Show that Im(S) = 0 and find the value of Re(S).

[3 marks]

Question 5c

The roots $\omega_1, \omega_2, ..., \omega_5$ are represented on an Argand diagram.

(c)

Describe the geometrical shape made by the five roots.

[1mark]

Question 6

Consider the equations $u^* + 2v = 2i$ and $iu + v^* = 3$, where $u, v \in \mathbb{C}$. Find $\frac{u}{v}$ giving your answer in the form $re^{i\theta}$, where r > 0 and $0 < \theta < 2\pi$.

[8 marks]

Question 7

By first expressing $1 + \sqrt{3}i$ and -1 + i in the form $r \operatorname{cis} \theta$ where r > 0 and $-\pi < \theta \le \pi$, show that $\frac{5\pi}{12} = 2 + \sqrt{3}$.

[8 marks]

Question 8a

Consider the complex number $z = 1 + \cos 2\theta + i \sin 2\theta$.

(a)

Find the modulus and argument of z.

Question 8b

(b) Solve z = 0 for $-\pi < \theta \le \pi$.

[2 marks]

Question 9a

Let $z = e^{i\theta}$.

(a) Show that (i) $z + z^2 + z^3 + \dots + z^n = \cos \theta + \cos 2\theta + \dots + \cos n\theta + i(\sin \theta + \sin 2\theta + \dots + \sin n\theta),$ (ii) $(2 - z)(2 - z^*) = 5 - 4 \cos \theta.$

[4 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 9b

(b)

Use the results found in part (a) to find the sum of the infinite series

$$\frac{\sin\theta}{2} + \frac{\sin 2\theta}{2^2} + \frac{\sin 3\theta}{2^3} + \frac{\sin 4\theta}{2^4} + \cdots$$

[4 marks]

Question 10a

The primary square root of a complex number z is defined as $\sqrt{z} = x + iy$, where x, $y \in \mathbb{R}$ and $x \ge 0$. If x = 0 then the value for y is chosen such that $y \ge 0$. Note that the other square root of z will then be given by $-\sqrt{z} = -x - iy$.

(a)

Show that

$$x = \sqrt{\frac{\text{Re}(z) + \sqrt{(\text{Re}(z))^2 + (\text{Im}(z))^2}}{2}}$$

[5 marks]

Question 10b

(b)

Given that x > 0, derive a formula for y in terms of x and Im(z), and explain why y in this case will always have the same sign (positive, negative, or zero) as Im(z).

[2 marks]

Question 10c

(c) Hence show that in general

$$y = \pm \sqrt{\frac{-\text{Re}(z) + \sqrt{(\text{Re}(z))^2 + (\text{Im}(z))^2}}{2}}$$

with the choice of the positive or negative value being dependent on the properties of z.

[2 marks]

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 10d

(d)

Explain what must be true of z for each of the following to be true: (i) $x = 0, y \neq 0$ (ii) $x \neq 0, y = 0$ (iii) x = 0, y = 0

[3 marks]