

19.1 Electrochemical Cells

Question Paper

Course	DP IB Chemistry
Section	19. Redox Processes (HL only)
Торіс	19.1 Electrochemical Cells
Difficulty	Hard

Time allowed:	10
Score:	/5
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 1

Which of the following can be used for a standard hydrogen electrode (SHE)?

	Electrode	Electrolyte solution
Α.	Graphite	$1 \mathrm{mol}\mathrm{dm}^{-3}\mathrm{H}_2\mathrm{SO}_4$
В.	Graphite	1 mol dm ⁻³ HCl
C.	Platinum	$0.5 \mathrm{mol}\mathrm{dm}^{-3}\mathrm{H}_2\mathrm{SO}_4$
D.	Platinum	0.5 mol dm ⁻³ HCl

[1 mark]

Question 2

What are the ratios of gases produced at the electrodes in the electrolysis of dilute vs concentrated sodium chloride solution?

	Ratio of gas produced at cathode : anode in the electrolysis of dilute NaCl	Ratio of gas produced at cathode : anode in the electrolysis of concentrated NaCl
Α.	1:1	2:1
В.	1:1	1:2
C.	1:2	1:1
D.	2:1	1:1

[1 mark]

Question 3

Which of the following could be used to electroplate a zinc medal?

- A. 1.0 mol dm $^{-3}$ AgNO₃ solution with a silver anode
- B. 1.0 mol dm $^{-3}\,AgNO_{3}$ with a silver cathode
- C. 1.0 mol dm $^{-3}\,CuSO_4$ solution with a copper cathode
- D. 1.0 mol dm $^{-3}$ solution of SnCl_2 and a tin anode

[1mark]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4

The diagram below shows the set-up of aluminium and silver cells in series:

What calculation shows the loss in mass of the aluminium electrode if the silver electrode gains 0.25 g?

A. Al mass lost = $\frac{107.87 \times 3 \times 0.25}{26.98}$ B. Al mass lost = $\frac{107.87 \times 0.33 \times 0.25}{26.98}$ C. Al mass lost = $\frac{26.98 \times 0.33 \times 0.25}{107.87}$ D. Al mass lost = $\frac{26.98 \times 3 \times 0.25}{107.87}$

[1mark]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 5

The oxidation of iron is a spontaneous process described by the overall equation:

Fe (s) +
$$\frac{1}{2}O_2(g) + H_2O(I) \rightarrow Fe(OH)_2(s)$$

(ΔG^{θ} = -164 kJ mol⁻¹at 298 K)

The two half equations for the process are:

$$Fe^{2+}(s) + 2e^{-} \rightarrow Fe(s)$$

$$1/_2O_2(g) + H_2O(l) + 2e^- \rightarrow 2OH^-(s)$$

 $(\Delta G^{\theta} = -nFE^{\theta}, F = 9.65 \times 10^4 \text{ C mol}^{-1})$

Which is the correct calculation to work out E^{θ} in V?

A.
$$E^{\theta} = \frac{-164}{-2 \times 9.65}$$

B. $E^{\theta} = \frac{-164\ 000}{-2 \times 96\ 500}$

 $\mathsf{C}.E^{\theta} = \frac{-164\ 000}{-0.5\ \times\ 96\ 500}$

 $\mathsf{D}.\, \mathsf{E}^{\theta} = \frac{-164}{-0.5 \times 9.65}$

[1mark]

Page 4 of 4