

2.1 Atomic & Electronic Structure

Question Paper

Course	DP IB Chemistry
Section	2. Atomic Structure
Topic	2.1 Atomic & Electronic Structure
Difficulty	Hard

Time allowed: 20

Score: /10

Percentage: /100

Element X is in period 2 and has the first seven ionisation energies in kJ mol⁻¹ as shown.

1300 3380 5330	7460	11 010	13 320	71 200
----------------	------	--------	--------	--------

What is the electronic configuration of element X?

- **A** $1s^2 2s^2 2p^4$
- **B** $1s^2 2s^2 2p^2$
- $C 1s^2 2s^2 2p^3$
- **D** $1s^2 2s^2 2p^6$

[1 mark]

Question 2

For the successive ionisation energies of oxygen, where would the highest jump be expected to occur?

- A second ionisation energy
- **B** first ionisation energy
- C seventh ionisation energy
- **D** sixth ionisation energy

Which statement explains the similarity in chemical behaviour for isotopes of the same element?

- A they may have the same electronic configuration, depending on the reaction
- **B** they have the same electronic configuration
- **C** their mass numbers are different
- **D** they have different numbers of neutrons

[1 mark]

Question 4

Which species produces a half-filled set of p orbitals on losing an electron?

- A Li⁺
- B F
- C N
- D N

Which statement explains why electrons pair up in orbitals before occupying an orbital of a higher energy level?

- A the energy from repulsion is greater than the jump to a higher orbital
- **B** electrons occupy higher energy orbitals before lower energy orbitals
- **C** electrons in lower orbitals have higher energies
- **D** the energy from repulsion is less than the jump to a higher orbital

[1 mark]

Question 6

An element consists of two isotopes ⁶⁹X and ⁷¹X, whose abundances are 60% and 40% respectively. What is the relative atomic mass of element X?

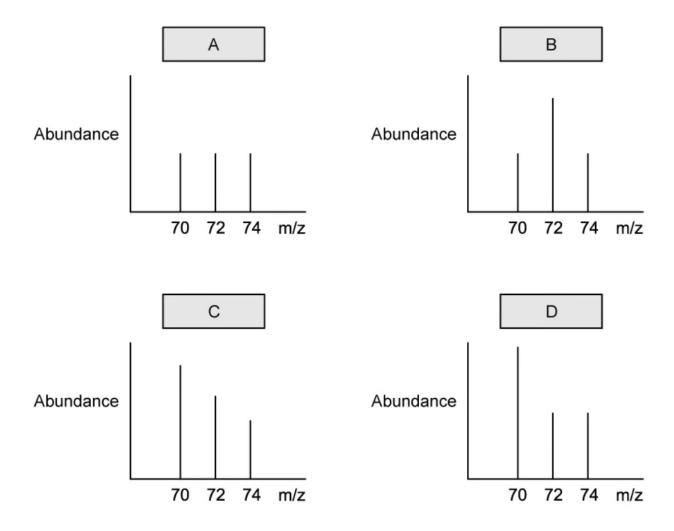
- **A** 69.2
- **B** 69.8
- **C** 70.0
- **D** 70.2

Which equation is correct for the third ionization energy for the element nitrogen?

- **A** $N^{+}(g) \rightarrow N^{4+}(g) + 3e^{-}$
- **B** $N^{2+}(g) \to N^{3+}(g) + e^{-}$
- **C** $N(g) \to N^{3+}(g) + 3e^{-}$
- $D \qquad N^{3+}(g) \to N^{4+}(g) \ + e^{-}$

[1 mark]

Question 8


A line emission spectrum occurs when

- A electrons release energy as they move from high to low energy levels
- B electrons release energy as they move from low to high energy levels
- **C** electrons absorb energy as they move from high to low energy levels
- **D** electrons absorb energy as they move from low to high energy levels

A spectral line that would be found in the **visible** spectrum of the hydrogen emission spectrum would be

- ${\pmb A} \qquad n_1 \to n_2$
- $\textbf{B} \qquad n_2 \rightarrow n_3$
- ${\bm C} \qquad n_3 \to n_2$
- $\textbf{D} \qquad n_3 \rightarrow n_{\scriptscriptstyle \infty}$

Chlorine has two naturally occurring isotopes, ³⁵Cl and ³⁷Cl, whose abundance is 75% and 25% respectively. The mass spectrum of chlorine gas would be

