

10.2 Fields at Work

Question Paper

Course	DP IB Physics
Section	10. Fields (HL only)
Торіс	10.2 Fields at Work
Difficulty	Easy

Time allowed:	20
Score:	/10
Percentage:	/100

Question 1

When a mass is moved against the force of gravity, work is done such that the change in work done, ΔW is equal to the change in gravitational potential ΔV .

Which line correctly identifies the equation and named variables for work done when moving a mass in a gravitational field?

	symbol equation	word equation	
Α.	Fs	force × distance	
В.	FΔV	force × change in gravitational potential	
C.	ms	mass × distance	
D.	mΔV	mass × change in gravitational potential	

[1 mark]

Question 2

When a mass moves through a gravitational field the magnitude of the potential energy E_P changes. Which equation could be used to correctly calculate this?

A.
$$\Delta E_p = GMm\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

B. $\Delta E_p = GMm\left(-\frac{1}{r_1} - \frac{1}{r_2}\right)$
C. $\Delta E_p = GMm\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$
D. $\Delta E_p = GMm\left(\frac{1}{r_1} \times \frac{1}{r_2}\right)$

[1 mark]

Question 3

Two point charges q_1 and $2q_2$ are separated by distance 2r.

What is the value of the gravitational potential energy E_p ?

$$\begin{aligned} & \text{A.} E_p = \frac{2q_1q_2}{4\,\pi\varepsilon_0 r} \\ & \text{B.} E_p = \frac{q_1q_2}{8\,\pi\varepsilon_0 r} \\ & \text{C.} E_p = \frac{q_1q_2}{4\,\pi\varepsilon_0 r} \end{aligned}$$

$$\mathsf{D}.E_p = \frac{2q_1q_2}{8\pi\varepsilon_0 r}$$

[1mark]

Question 4

An electric field can be defined in terms of the variation of electric potential at different points in the field.

Which graph correctly represents this relationship?

Question 6

Two parallel metal plates are separated by distance, d and have a potential difference of V_{e} .

Which equation correctly gives the magnitude of the electric force acting on a stationary charged particle between the plates if the particle has a charge of Q?

A.
$$F = \frac{E}{Q}$$

B. $F = k \frac{q_1 q_2}{d^2}$

C.F = ma

$$D.F = \frac{QV_e}{d}$$

[1 mark]

Question 7

Read the following statements about the escape velocity on Earth. Which ones are correct?

Escape velocity;

- I. Increases as the mass of the object increases
- II. Depends on the mass of the Earth and is not affected by the mass of the object

III. Is defined as the minimum speed that allows an object to escape a gravitational field with no further energy input

A.I.only

B.I. and II.

- C.II. and III.
- D. III. only

[1 mark]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 8

The equation for linear orbital speed is

$$V = \sqrt{\frac{GM}{r}}$$

Which statement is a consequence of this equation?

- A. Orbital speed is the same for all objects, regardless of their mass, when their orbital radius is the same.
- B. Orbital speed is the same for all objects, regardless of their mass, when they orbit the same planet.
- C. The gravitational constant, G, can be derived if orbital speed and radius are both known.
- D. Time period, T can be derived from orbital speed and radius.

[1mark]

Question 9

Gravitational and electrostatic forces are similar in many ways. Which statements are correct about both?

- I. Both electrostatic forces and gravitational forces are always attractive
- II. Both electrostatic forces and gravitational forces may be attractive or repulsive
- III. Both electrostatic forces and gravitational forces follow an inverse square law
- IV. The equations used to calculate these forces rely on knowing certain universal constants
- A. I and III only
- B. III and IV only
- C.I, II, and III only
- $\mathsf{D}.\,\mathsf{II},\mathsf{III},\mathsf{and}\,\mathsf{IV}\,\mathsf{only}$

[1mark]

Page 5 of 6

SaveMyExams Headtosavemyexams.co.uk for more awesome resources

Question 10

A charged particle in an electric field will experience a force on it that will cause it to move. The three particles X, Y and Z are experiencing a force which deflects their motion as shown. What three particles could X, Y and Z be?

	X	Y	Z
Α.	beta-minus particle	photon	nucleus
B.	alpha particle	neutron	photon
C.	neutron	electron	alpha-particle
D.	electron	beta-plus particle	neutron

[1mark]