

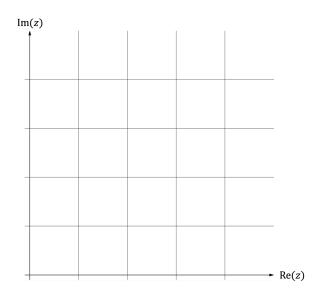
1.8 Complex Numbers

Question Paper

Course	DP IB Maths
Section	1. Number & Algebra
Topic	1.8 Complex Numbers
Difficulty	Medium

Time allowed: 110

Score: /89


Percentage: /100

Question la

Consider the complex numbers $z_1 = 2 + 2i$ and $z_2 = 2 + 2\sqrt{3}i$.

a)

 ${\it Sketch}\,z_1^{} \ {\it and}\,z_2^{} \ {\it on}\, \\ {\it the}\, {\it Argand}\, \\ {\it diagram}\, \\ {\it below}, \\ {\it be}\, \\ {\it sure}\, \\ {\it to}\, \\ {\it include}\, \\ {\it an}\, \\ {\it appropriate}\, \\ {\it scale}.$

[2 marks]

Question 1b

b)

Find the modulus of z_1 and z_2 .

Question 1c

c)

Find the argument of z_1 and z_2 .

[3 marks]

Question 2

Solve the following equations for x

(i)
$$x^2 + 4x + 5 = 0$$

(ii)
$$x^2 = -625$$

(iii)
$$x^4 = 24 - 2x^2$$
.

Question 3a

Let $w_1 = z_1 z_2$, where $z_1 = 5 + i$ and $z_2 = 1 + 2i$.

a)

Express w in the form w = a + bi.

[2 marks]

Question 3b

b)

Find the modulus and argument for $\it w$

[4 marks]

Question 4a

Let
$$z = \frac{w_1}{w_2}$$
, where $w_1 = 4 - i$ and $w_2 = 1 - 2i$.

a)

Express z in the form z = a + bi.

 $Head to \underline{save my exams.co.uk} for more a we some resources$ [3 marks] Find the modulus and argument for ${\it z}$. [4 marks]

Question 5a

Question 4b

Consider the complex numbers z = 3 - 4i and w = 7 - 2i.

a)

Find

(i)

z+w

W-Z.

[2 marks]

Question 5b

Let z^* and w^* represent the complex conjugates of z and w, respectively.

Write down z^* and w^* , giving your answers in the form a + bi.

[2 marks]

Question 5c

c)

Find

(i) $Z^* W$

[4 marks]

Question 6

Find all possible real values for a and b such that

$$a + bi = 8i$$

(ii)
$$(2+3i)(a+bi) = 13$$

(iii)
$$(a+i)(2+bi) = -6+22i$$
.

 $Head to \underline{save my exams.co.uk} for more a we some resources$

Question 7

Consider the complex numbers w = iz and w + 2z = 7 + 6i.

Find

(i)

Re(w)

(ii)

Im(w)

(iii)

Re(z)

(iv)

Im(z).

Question 8

It is given that $z_1 = 3 + 4i$ and $z_2 = -2 + 2i$.

Find

(i)
$$iz_1 + z_2$$

$$\frac{z_1}{iz_1}$$

$$i(z_1 z_2)$$
.

 $Head to \underline{save my exams.co.uk} for more a we some resources\\$

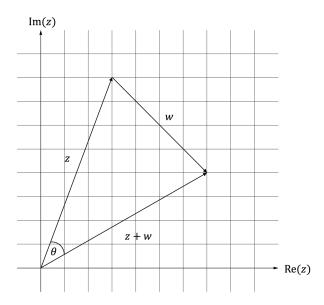
Question 9

Find the complex numbers z and w such that

$$2z - iw^* = 5 + 7i$$

$$w + iz^* = 5 + 16i$$

[8 marks]


 $Head to \underline{savemy exams.co.uk} for more awe some resources\\$

Question 10a

Let z = 3 + 8i and w = 4 - 4i.

a)

Find θ , the angle shown on the diagram below.

[5 marks]

Question 10b

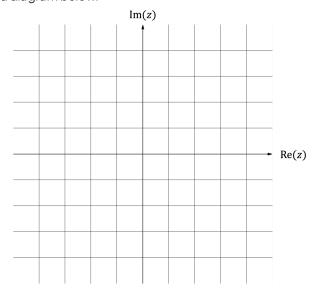
b)

Find the area of the triangle formed in the diagram above.

Question 11a

Let z = -1 - 3i and w = 1 + i.

a)


Find zw.

[2 marks]

Question 11b

b)

Sketch z, w and zw on the Argand diagram below.

Question 11c

Let θ be the angle between z and zw and ϕ be the angle between w and zw.

c)

Find the angles heta and heta, giving your answers in degrees.

[4 marks]

Question 12a

Let
$$w = \frac{z+1}{z^*+1}$$
, where $z = a + bi$, $a, b \in \mathbb{R}$.

a)

Write w in the form x + yi, $x, y \in \mathbb{R}$.

[4 marks]

 $Head to \underline{save my exams.co.uk} for more a we some resources$

Question 12b

b)

Determine the conditions under which w is purely imaginary.