

15.2 Entropy & Spontaneity

Question Paper

Course	DP IB Chemistry	
Section	15. Energetics/Thermochemistry (HL only)	
Торіс	15.2 Entropy & Spontaneity	
Difficulty	Hard	

Time allowed:	10
Score:	/5
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 1

Which row correctly describes a reaction that only occurs spontaneously at a low temperature?

	Reaction	ΔH _{reaction}		
Α.	$X(g) + Y(g) \rightarrow Z(g)$	exothermic		
В.	$R(s) \rightarrow T(g) + U(g)$	endothermic		
C.	$E(g) \rightarrow 3F(g)$	$E(g) \rightarrow 3F(g)$ endothermic		
D.	$M(g) + 2N(g) \rightarrow P(g) + Q(g)$	endothermic		

[1 mark]

Question 2

Urea reacts with water to produce carbon dioxide and ammonia via the following reaction

 $CO(NH_2)_2(aq) + H_2O(l) \rightarrow CO_2(g) + 2NH_3(g)$ $\Delta H = 133 \text{ kJ mol}^{-1}$

Thermodynamic data for the components of this reaction are

Substance	CO(NH ₂) ₂ (aq)	H ₂ O (I)	CO ₂ (g)	NH ₃ (g)
S [≣] (JK ⁻¹ mol ⁻¹)	105	70	214	192

At which of the following temperatures will this reaction become feasible?

A.
$$\frac{133}{[214 + (2 \times 192)] - (105 + 70)}$$

B.
$$\frac{[214 + (2 \times 192)] - (105 + 70)}{133}$$

C.
$$133 - \frac{[214 + (2 \times 192)] - (105 + 70)}{1000}$$

D.
$$\frac{133 \times 1000}{[214 + (2 \times 192)] - (105 + 70)}$$

[1mark]

Question 3

Which reaction occurs with the largest increase in entropy?

- A. $Pb(NO_3)_2(s) + 2KI(s) \rightarrow PbI_2(s) + 2KNO_3(s)$
- $\mathsf{B}.\,\mathsf{CaCO}_3(\mathsf{s}) \to \mathsf{CaO}(\mathsf{s}) + \mathsf{CO}_2(\mathsf{g})$
- C. $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$

 $\mathsf{D}.\,\mathsf{H}_2(\mathsf{g}) + \mathsf{I}_2(\mathsf{g}) \rightarrow 2\mathsf{HI}(\mathsf{g})$

Page 2 of 3

Head to <u>savemyexams.co.uk</u> for more awesome resources

[1mark]

Question 4

Which is correct for the reaction $H_2O(g) \rightarrow H_2O(I)$?

A. Enthalpy increases and entropy increases.

B. Enthalpy decreases and entropy increases.

C. Enthalpy increases and entropy decreases.

D. Enthalpy decreases and entropy decreases.

[1mark]

Question 5

Which factors will increase the entropy of this system?

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

- I. Increasing the temperature without changing the volume of the container.
- II. Decreasing the concentration of the gas without changing the volume of the container.
- III. Increasing the pressure without changing the volume of the container.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

[1mark]

Page 3 of 3