

12.1 Electrons in Atoms

Question Paper

Course	DP IB Chemistry
Section	12. Atomic Structure (HL only)
Торіс	12.1 Electrons in Atoms
Difficulty	Easy

Time allowed:	20
Score:	/14
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question la

a)

An element Y has the following first six ionisation energies in kJ mol⁻¹. These are shown in the table below.

	lst	2nd	3rd	4th	5th	6th
lonisation energy (kJ mol ⁻¹)	577	1820	2740	11600	14800	18400

State what group of the Periodic Table this element belongs to.

[1]

[1mark]

Question 1b

b)

State what can be determined from the frequency of the convergence limit in a hydrogen emission spectrum.

[1]

[1 mark]

Question lc

c)

Hydrogen spectral data give the frequency of 3.30×10^{15} Hz for its convergence limit.

Calculate the ionisation energy, in J, for a single atom of hydrogen using Sections 1 and 2 of the Data Booklet.

[1]

[1 mark]

Question 1d

d)

Calculate the wavelength, in m, for the electron transition corresponding to the frequency in part (c) using Section 1 of the Data Booklet.

[1 mark]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2a

a)

State which element in Period 2 will have the highest first ionisation energy value.

[1]

[1mark]

Question 2b

b)

Write an equation, including state symbols, for the third ionisation energy of beryllium.

[1mark]

Question 2c

C)

The successive ionisation energies of an element, X, are shown below.

State how many shells element X has.

[1] **[1 mark]**

Question 2d

d) Deduce which group element X is in.

Head to <u>savemyexams.co.uk</u> for more a we some resources

[1mark]

Question 3a

a) State the general trend in first ionisation energies across Period 3.

Question 3b

b)

The first ionisation energy of aluminium is lower than magnesium. Write the full electron configurations of aluminium and magnesium.

[2]

[1]

[1mark]

[2 marks]

Question 3c

c)

Using the electron configurations from part (b), explain why the first ionisation energy of aluminium is lower than magnesium.

[2]

[2 marks]

Question 3d

d)

Write the equation, including state symbols, for the second ionisation energy of aluminium.

[1]

[1 mark]

Page 5 of 5