

4.3 Intermolecular Forces & Metallic Bonding

Question Paper

Course	DP IB Chemistry	
Section	4. Chemical Bonding & Structure	
Торіс	4.3 Intermolecular Forces & Metallic Bonding	
Difficulty	Medium	

Time allowed:	70
Score:	/51
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question la

a) Magnesium is a lightweight metal used for the manufacturing of car seats.

Describe the structure and bonding present in solid magnesium.

[3 marks]

Question 1b

b) Magnesium has a considerably higher boiling point than sodium. Explain this difference, despite the fact both elements are in period 3.

[3 marks]

Question 1c

c) Explain, with reference to bonding, the principal property of a metal that makes it suited to manufacturing shaped objects such as railings.

[3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 1d

d) Many alloys are harder than their constituent metal elements alone.

Outline the reason for this with reference to the structure of metal alloys.

[2 marks]

Question 2a

a) Based on the type of intermolecular force present, explain why butan-1-ol has a higher boiling point than butanal.

[2 marks]

Question 2b

b) Ethane, C₂H₆, and disilane, Si₂H₆, are both hydrides of Group 4 elements with similar structures but different chemical properties.

Explain why disilane has a higher boiling point than ethane.

Question 2c

c) Put the following molecules in order of increasing boiling point and explain your choice:

CH₃CHO CH₃CH₂OH CH₃CH₂CH₃

[3 marks]

Question 2d

d) Based on the type of intermolecular force present, explain the difference in solubility in water between ethane and ethanol.

[4 marks]

Question 3a

a) The elements sodium, aluminium, silicon, phosphorus and sulfur are in period 3 of the periodic table.

Describe and explain the general trend in melting points of the metals in period 3.

[4 marks]

Question 3b

b) Identify, with reasoning, which of the period 3 metals has the highest melting point.

[3 marks]

Question 3c

c) Explain, by reference to the intermolecular forces, why sulfur has a higher melting point than phosphorus.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 3d

d) Although the molar masses of ICl and Br₂ are very similar, the boiling point of ICl is 97.4 °C and that of Br₂ is 58.8 °C.

Explain the difference in these boiling points in terms of the intermolecular forces present in each liquid.

[2 marks]

Question 4a

a) The melting points of some Group 1 elements are listed in **Table 1**.

Table 1

	Na	к	Rb
Melting point / °C	98	63	

Predict, with a reason, the melting point of Rb.

[3 marks]

Question 4b

b) Explain why ammonia, NH₃, is a gas at room temperature.

[2 marks]

Question 4c

c) Phosphine (IUPAC name phosphane) is a hydride of phosphorus, with the formula PH_3 . Phosphine has a much greater molar mass than ammonia.

Explain why phosphine has a significantly lower boiling point than ammonia.

[3 marks]

Question 4d

d) Identify the type of interaction that must be overcome when liquid hydrazine, N_2H_4 , vaporizes. Suggest, with a reason, whether hydrazine has a lower or higher boiling point than diimide, N_2H_2 .

Question 5a

a) Copper is a transition metal. Describe the bonding in metals.

[2 marks]

Question 5b

b) Aluminium and copper can be used to make the alloy duralumin.Explain why an aluminium-copper alloy is harder than pure aluminium.

[2 marks]

Question 5c

- c) This question is about the chlorides of copper and aluminium.
- i) State the type of bonding present in copper(II) chloride which melts at 771 K.
- ii) The chloride of aluminium, $AICI_3$, melts 465 K. Suggest why the melting point is so much lower than that of $CuCI_2$.

Question 5d

d) Both copper and benzene have delocalised electrons. Explain why both structures have delocalised electrons, copper conducts electricity, but benzene does not.