

1.2 Reacting Masses & Volumes

Question Paper

Course	DP IB Chemistry	
Section	1. Stoichiometric Relationships	
Topic	1.2 Reacting Masses & Volumes	
Difficulty	Easy	

Time allowed: 50

Score: /38

Percentage: /100

 $Head to \underline{savemy exams.co.uk} for more a we some resources$

Question la

a)

In a firework, solid potassium nitrate, KNO_3 , decomposes to form solid potassium nitrite, KNO_2 , and oxygen, O_2 .

(i)

Write a balanced symbol equation for this reaction.

(ii)

Use section 6 of the data booklet to calculate the amount, in g, of potassium nitrate, KNO_3 , required to make 1.5 g of oxygen. Give your answer to 2 significant figures.

[4 marks]

Question 1b

b)

Use section 2 of the data booklet to calculate the volume of gas at STP, in dm^3 , that is produced in the reaction outlined in part (a). Give your answer to 2 significant figures.

[1 mark]

Question 1c

c)

Potassium can form a superoxide, $KO_2(s)$, which will react with carbon dioxide, $CO_2(g)$, to produce potassium carbonate, $K_2CO_3(s)$ and oxygen, $O_2(g)$, as shown in the equation below.

$$4KO_2(s) + 2CO_2(g) \rightarrow 2K_2CO_3(s) + 3O_2(g)$$

(i)

Calculate the amount, in moles, of 5.00 g of potassium superoxide. Give your answer to 3 significant figures

(ii)

Calculate the amount, in moles, and therefore volume, in dm^3 , of carbon dioxide which will react with the superoxide. Give your answer to 3 significant figures.

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

[3 marks]

Question 1d

d)

A student calculated that 4.86 g of potassium carbonate, KCO₃, should be produced during the reaction outlined in part (c), 2.61 g of potassium carbonate, KCO₃, was produced when the experiment was carried out. Calculate the percentage yield for the production of potassium carbonate. Give your answer to 2 decimal places.

[1 mark]

Question 2a

A student carried out a series of titration experiments. Their results from their experiments are shown in the table below.

Titration	Rough	1	2	3
Final reading / cm ³	25.45	21.95	43.65	22.10
Initial reading / cm ³	0.00	0.05	21.90	0.10
Titre / cm ³	25.45	21.90	21.75	22.00

a)

Calculate the mean titre using the concordant results. Give your answer to 2 decimal places.

[2 marks]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 2b

b)

The student added 0.10 mol dm $^{-3}$ hydrochloric acid, HCI (aq), to the burette and performed the titration using a 25.00 cm 3 sample of an unknown carbonate solution. The equation for the neutralisation reaction is shown below.

 $M_2CO_3(aq) + 2HCI(aq) \rightarrow 2MCI(aq) + CO_2(g) + H_2O(l)$

Using your answer to part (a), calculate the amount, in moles, of hydrochloric acid used. Give your answer to 2 decimal places.

(ii)

Calculate the amount, in moles, of the aqueous carbonate solution. Give your answer to 2 decimal places.

[2 marks]

Question 2c

C)

Using your answer to part (b) (i) determine the concentration in mol dm^{-3} of the aqueous carbonate. Give your answer to 2 decimal places.

[1 mark]

Question 2d

d)

The student used 1.38 g of the unknown carbonate to make up a 250 cm 3 standard solution for the titration outlined in part (a). Using section 6 of the data booklet, prove that the unknown carbonate is potassium carbonate, K_2CO_3 .

Calculate the amount, in moles, of K_2CO_3

[4 marks]

Question 3a

a)

 $3.75\,g$ of zinc oxide, ZnO (s), was added to $150\,cm^3$ of $1.00\,mol\,dm^{-3}$ of sulfuric acid (aq) producing a salt. Write a balanced symbol equation for this reaction.

[1 mark]

Question 3b

h)

Using the equation in part (a) and section 6 of the data booklet, calculate the limiting reagent in the reaction. Give your answer to 2 significant figures.

[3 marks]

Question 3c

c)

Use your answer to part (b) and section 6 of the data booklet to calculate the amount, in grams, of the salt produced. Give your answer to 3 significant figures.

[1 mark]

Question 3d

d)

Calculate the amount, in moles, of the excess reactant left over at the end of the reaction. Give your answer to 2 decimal places.

[1 mark]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 4a

 $A \, sample \, of \, pure \, magnesium \, nitrate, \, Mg(NO_3)_2, \, was \, decomposed \, by \, heating \, as \, shown \, in \, the \, equation \, below \, and \, constant \, a$

$$2Mg(NO_3)_2(s) \rightarrow 2MgO(s) + 4NO_2(g) + O_2(g)$$

A 0.75 g sample of $Mg(NO_3)_2$ was completely decomposed by heating.

a)

Calculate the amount, in moles, of magnesium nitrate that was decomposed. Give your answer to 2 decimal places.

[2 marks]

Question 4b

b)

Calculate the total amount, in moles, of gas produced in the reaction. Give your answer to 2 decimal places.

[2 marks]

Question 4c

C)

Calculate the total volume, in m³, of gas produced at 333 K and 100 kPa.

[2 marks]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 5a

a)

 $90\,\mathrm{cm^3}$ ammonia gas, $\mathrm{NH_3}(g)$, is combusted in oxygen, $\mathrm{O_2}(g)$, to produce nitrogen oxide and water, $\mathrm{H_2O}(I)$. What is the total volume of gases remaining when $90\,\mathrm{cm^3}$ of ammonia is combusted completely with $50\,\mathrm{cm^3}$ of oxygen according to the equation shown?

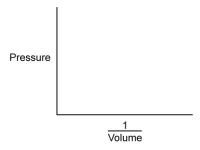
$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$$

Deduce the limiting reagent for the combustion of ammonia, 90 cm^3 ammonia gas, $NH_3(g)$, is combusted in oxygen.

[1 mark]

Question 5b

b)


Calculate the total volume, in cm³, of gases remaining for the reaction in part (a).

[4 marks]

Question 5c

c)

Sketch a line on the graph below that shows the correct relationship between pressure and $\frac{1}{\text{volume}}$

Page 7 of 8

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

[1 mark]

Question 5d

d)

At 25 °C and 100 kPa a gas occupies a volume of 35 dm³. Using the equation $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$, calculate the new temperature, in °C, of the gas if the volume is decreased to 15 dm³ at **constant** pressure.

[2 marks]