YOURNOTES

L

IB Maths DP

2. Functions

CONTENTS

- 2.1 Linear Functions & Graphs
 - 2.1.1 Equations of a Straight Line
- 2.2 Quadratic Functions & Graphs
 - 2.2.1 Quadratic Functions
 - 2.2.2 Factorising & Completing the Square
 - 2.2.3 Solving Quadratics
 - 2.2.4 Quadratic Inequalities
 - 2.2.5 Discriminants
- 2.3 Functions Toolkit
 - $2.3.1 Language \, of \, Functions$
 - 2.3.2 Composite & Inverse Functions
 - 2.3.3 Graphing Functions
- 2.4 Further Functions & Graphs
 - 2.4.1 Reciprocal & Rational Functions
 - 2.4.2 Exponential & Logarithmic Functions
 - 2.4.3 Solving Equations
 - 2.4.4 Modelling with Functions
- 2.5 Transformations of Graphs
 - 2.5.1 Translations of Graphs
 - 2.5.2 Reflections of Graphs
 - 2.5.3 Stretches of Graphs
 - 2.5.4 Composite Transformations of Graphs

SaveMyExams

2.1 Linear Functions & Graphs

2.1.1 Equations of a Straight Line

Equations of a Straight Line

How do I find the gradient of a straight line?

- Find two points that the line passes through with coordinates (x_1, y_1) and (x_2, y_2)
- The gradient between these two points is calculated by

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

• This is given in the formula booklet

- The gradient of a straight line measures its **slope**
 - A line with gradient 1 will go up 1 unit for every unit it goes to the right
 - A line with gradient -2 will go down two units for every unit it goes to the right

What are the equations of a straight line?

- y = mx + c
 - $\circ~$ This is the ${\it gradient-intercept}~{\it form}$
 - \circ It clearly shows the gradient *m* and the *y*-intercept (0, c)
- $y y_1 = m(x x_1)$
 - This is the point-gradient form
 - It clearly shows the gradient m and a point on the line (x_1, y_1)
- ax + by + d = 0
 - This is the **general form**

• You can quickly get the *x*-intercept
$$\left(-\frac{d}{a}, 0\right)$$
 and *y*-intercept $\left(0, -\frac{d}{b}\right)$

How do I find an equation of a straight line?

- You will need the gradient
 - If you are given two points then first find the gradient
- It is easiest to start with the **point-gradient form**
 - then rearrange into whatever form is required
 - multiplying both sides by any denominators will get rid of fractions
- You can check your answer by using your GDC
 - Graph your answer and check it goes through the point(s)
 - If you have two points then you can enter these in the **statistics mode** and find the regression line y = ax + b

YOUR NOTES

Page 2 of 84

 ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

Exam Tip

- A sketch of the graph of the straight line(s) can be helpful, even if not demanded by the question
 - Use your GDC to plot them
- Ensure you state equations of straight lines in the format required
 - Usually y = mx + c or ax + by + d = 0
 - Check whether coefficients need to be integers (they usually are for ax + by + d = 0)

?

Worked Example

The line *I* passes through the points (-2, 5) and (6, -7).

Find the equation of 1, giving your answer in the form ax + by + d = 0 where a, b and c are integers to be found.

```
Find the gradient between (-2, 5) and (6, -7)

Formula booklet

m = \frac{-7}{6} \frac{-5}{-2} = -\frac{3}{2} Gradient formula

m = \frac{y_2 - y_1}{x_2 - x_1}

Use the point-gradient formula

Formula booklet

[a_{11}, y_1] = (-2, 5) m = -\frac{3}{2}

y - 5 = -\frac{3}{2}(x + 2)

x_1(y-5) = -3(x+2)

x_2(y-5) = -3(x+2)

y - 10 = -3x - 6

Multiply by denominator

y - y_1 = m(x - x_1)

Multiply by denominator

x_2(y-5) = -3(x+2)

x_2(y-10) = -3x - 6

Rearrange
```


🗲 Save My Exams

 ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

 $(x - x_1)$

Worked Example

The line *I* passes through the point (4, -1) and is parallel to the line with equation 2x - 5y = 3.

Find the equation of 1, giving your answer in the form y = mx + c.

Rearrange into
$$y=mx+c$$
 to find the gradient
 $5y = 2x - 3 \implies y = \frac{2}{5}x - \frac{3}{5}$: gradient = $\frac{2}{5}$
Parallel lines $\implies m_1 = m_2$
 $m = \frac{2}{5}$

Use the point-gradient formula

Formula booklet
[ine]
Equations of a straight
$$y - y_1 = m(y_1)$$

 $(x_1, y_1) = (4, -1)$ $m = \frac{2}{5}$
 $y + 1 = \frac{2}{5}(x - 4)$
 $y + 1 = \frac{2}{5}x - \frac{8}{5}$
 $y = \frac{2}{5}x - \frac{13}{5}$

Head to savemy exams.co.uk for more a we some resources

🗲 Save My Exams

 ${\sf Headto} \underline{savemy exams. co.uk} for more a we some resources$

 ${\sf Headto} \underline{savemy exams. co.uk} for more a we some resources$

2.2 Quadratic Functions & Graphs

2.2.1 Quadratic Functions

Quadratic Functions & Graphs

What are the key features of quadratic graphs?

- A quadratic graph can be written in the form $y = ax^2 + bx + c$ where $a \neq 0$
- The value of a affects the shape of the curve
 - If a is **positive** the shape is **concave up** \cup
 - ∘ If *a* is **negative** the shape is **concave down** \cap
- The **y-intercept** is at the point (0, c)
- The zeros or roots are the solutions to $ax^2 + bx + c = 0$
 - These can be found by
 - Factorising
 - Quadratic formula
 - Using your GDC
 - These are also called the x-intercepts
 - There can be 0, 1 or 2x-intercepts
 - This is determined by the value of the **discriminant**
- There is an **axis of symmetry** at $x = -\frac{b}{2a}$
 - This is given in your formula booklet
 - If there are two x-intercepts then the axis of symmetry goes through the midpoint of them
- The **vertex** lies on the axis of symmetry
 - It can be found by **completing the square**
 - The x-coordinate is $x = -\frac{b}{2a}$
 - The y-coordinate can be found using the GDC or by calculating y when $x = -\frac{1}{2}$
 - If a is **positive** then the vertex is the **minimum point**
 - If a is negative then the vertex is the maximum point

Page 8 of 84

Head to <u>savemyexams.co.uk</u> for more awesome resources

YOUR NOTES

Ļ

What are the equations of a quadratic function?

- $f(x) = ax^2 + bx + c$
 - This is the **general form**
 - It clearly shows the y-intercept (0, c)
 - You can find the axis of symmetry by $x = -\frac{b}{2a}$
 - This is given in the formula booklet

•
$$f(x) = a(x-p)(x-q)$$

- This is the **factorised form**
- It clearly shows the roots (p, 0) & (q, 0)

• You can find the axis of symmetry by
$$x = \frac{p+1}{2}$$

- $f(x) = a(x-h)^2 + k$
 - This is the **vertex form**
 - It clearly shows the vertex (h, k)
 - The axis of symmetry is therefore x = h
 - It clearly shows how the function can be transformed from the graph $y = x^2$

q

Vertical stretch by scale factor a

Translation by vector
$$\begin{pmatrix} h\\ k \end{pmatrix}$$

How do I find an equation of a quadratic?

- If you have the **roots** x = p and x = q...
 - Write in factorised form y = a(x-p)(x-q)
 - You will need a third point to find the value of a
- If you have the **vertex** (h, k) then...
 - Write in vertex form $y = a(x h)^2 + k$
 - You will need a second point to find the value of a
- If you have **three random points** (*x*₁, *y*₁), (*x*₂, *y*₂) & (*x*₃, *y*₃) then...
 - Write in the general form $y = ax^2 + bx + c$
 - Substitute the three points into the equation
 - Form and solve a system of three linear equations to find the values of a, b & c

Page 9 of 84

Exam Tip

 \bigcirc

- Use your GDC to find the roots and the turning point of a quadratic function
 You do not need to factorise or complete the square
 - It is good exam technique to sketch the graph from your GDC as part of your working

🗲 Save My Exams

Head to <u>savemy exams.co.uk</u> for more a we some resources

Worked Example

The diagram below shows the graph of y = f(x), where f(x) is a quadratic function.

The intercept with the y-axis and the vertex have been labelled.

We have the vertex so use $y = a(x-h)^{2} + k$ Vertex (-1,8): $y = a(x - (-1))^{2} + 8$ $y = a(x + 1)^{2} + 8$

Substitute the second point

 $x = 0, y = 6 : 6 = a (0 + 1)^{2} + 8$ 6 = a + 8 a = -2 $y = -2 (x + 1)^{2} + 8$ YOUR NOTES

Page 11 of 84

2.2.2 Factorising & Completing the Square

Factorising Quadratics

Why is factorising quadratics useful?

- Factorising gives roots (zeroes or solutions) of a quadratic
- It gives the **x-intercepts** when drawing the graph

How do I factorise a monic quadratic of the form $x^2 + bx + c$?

- You might be able to spot the factors by inspection
 Especially if c is a prime number
- Otherwise find two numbers *m* and *n*...
 - A sum equal to b
 - $\bullet m + n = b$
 - A product equal to c

•
$$mn = c$$

- Rewrite bx as mx + nx
- Use this to factorise $x^2 + mx + nx + c$
- A shortcut is to write:
 - $\circ (x+m)(x+n)$

How do I factorise a non-monic quadratic of the form $ax^2 + bx + c$?

- If a, b & c have a common factor then first factorise that out to leave a quadratic with coefficients that have **no common factors**
- You might be able to spot the factors by **inspection**
 - Especially if a and/or c are **prime numbers**
- Otherwise find two numbers m and n..
 - A sum equal to b

$$\bullet m + n = b$$

• A product equal to ac

•
$$mn = ac$$

- Rewrite bx as mx + nx
- Use this to factorise $ax^2 + mx + nx + c$
- A shortcut is to write:
 - (ax+m)(ax+n)

• Then factorise common factors from numerator to cancel with the *a* on the denominator

How do I use the difference of two squares to factorise a quadratic of the form $A^2x^2 - C^2$?

- The difference of two squares can be used when...
 - There is **no x term**
 - The constant term is a negative
- Square root the two terms $A^2x^2\&\,C^2$
- The two factors are the sum of square roots and the difference of the square roots
- A shortcut is to write:

Page 12 of 84

 $Head to \underline{savemy exams. co. uk} for more a we some resources\\$

 $\circ (Ax + C)(Ax - C)$

YOUR NOTES

) Exam Tip

- You can deduce the factors of a quadratic function by using your GDC to find the solutions of a quadratic equation
 - Using your GDC, the quadratic equation $6x^2 + x 2 = 0$ has solutions
 - $x = -\frac{1}{2}$ and $x = \frac{1}{2}$
 - Therefore the factors would be (3x+2) and (2x-1)
 - i.e. $6x^2 + x 2 = (3x + 2)(2x 1)$

 ${\sf Headto} \underline{{\sf savemyexams.co.uk}} for more a we some resources$

YOUR NOTES

Ļ

Worked Example 2 Factorise fully: a) $x^2 - 7x + 12$. Find two numbers m and n such that m+n=b=-7 mn=c=12-4 + -3 = -7 -4 × -3 = 12 Split -7x up and factorise Shortcut $\begin{array}{l} x^{2} -4x - 3x + 12 \\ x(x-4) - 3(x-4) \end{array} \qquad (x+m)(x+n) \\ \hline (x-3)(x-4) \end{array}$ (x-3)(x-4)(x-3)(x-4)b) $4x^2 + 4x - 15$ Find two numbers m and n such that m+n=b=4 mn=ac=4×-15=-60 10 + -6 = 4 $10 \times -6 = -60$ Split 4 x up and factorise Shortcut $4x^{2} + 10x - 6x - 15$ $\frac{(ax+m)(ax+n)}{a}$ c) $18 - 50x^2$.

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Factorise the common factor $2(9-25x^2)$ Use difference of two squares 2(3-5x)(3+5x) YOUR NOTES

Page 15 of 84

 ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

Completing the Square	YOURNOTES
Why is completing the square for quadratics useful?	Ļ
 Completing the square gives the maximum/minimum of a quadratic function This can be used to define the range of the function It gives the vertex when drawing the graph It can be used to solve quadratic equations It can be used to derive the quadratic formula 	
How do I complete the square for a monic quadratic of the form $x^2 + bx + c$?	
• Half the value of b and write $\left(x + \frac{b}{2}\right)^2$	
• This is because $\left(x + \frac{b}{2}\right)^2 = x^2 + bx + \frac{b^2}{4}$	
• Subtract the unwanted $\frac{b^2}{4}$ term and add on the constant c	
$\circ \left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c$	
How do I complete the square for a non-monic quadratic of the form $ax^2 + bx + c$?	
• Factorise out the <i>a</i> from the terms involving x • $a\left(x^2 + \frac{b}{a}x\right) + x$	
 Leaving the c alone will avoid working with lots of fractions 	
• Half $\frac{b}{a}$ and write $\left(x + \frac{b}{2a}\right)^2$	
• This is because $\left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}$	
• Subtract the unwanted $\frac{b^2}{4a^2}$ term	
• Multiply by a and add the constant c	
$\circ a\left[\left(x+\frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}\right] + c$	
$\circ a\left(x+\frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$	

Exar

Exam Tip

- Some questions may not use the phrase "completing the square" so ensure you can recognise a quadratic expression or equation written in this form
 - $a(x-h)^2 + k(=0)$

Page 16 of 84

Page 17 of 84

Head to <u>savemy exams.co.uk</u> for more a we some resources

2.2.3 Solving Quadratics

Solving Quadratics Equations

How do I decide the best method to solve a quadratic equation?

- A quadratic equation is of the form $ax^2 + bx + c = 0$
- If it is a calculator paper then use your GDC to solve the quadratic
- If it is a non-calculator paper then...
 - $\circ~$ you can always use the $\mathbf{quadratic}~\mathbf{formula}$
 - you can **factorise** if it can be factorised with integers
 - you can always **complete the square**

How do I solve a quadratic equation by the quadratic formula?

- If necessary **rewrite** in the form $ax^2 + bx + c = 0$
- Clearly identify the values of a, b & c
- Substitute the values into the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4aa}}{2a}$$

0

- This is given in the formula booklet
- Simplify the solutions as much as possible

How do I solve a quadratic equation by factorising?

- Factorise to rewrite the quadratic equation in the form a(x-p)(x-q) = 0
- Set each factor to zero and **solve**
 - $\circ \ x p = 0 \Rightarrow x = p$

$$\circ \ x - q = 0 \Rightarrow x = q$$

How do I solve a quadratic equation by completing the square?

- Complete the square to rewrite the quadratic equation in the form $a(x h)^2 + k = 0$
- Get the squared term by itself

$$\circ (x-h)^2 = -\frac{k}{a}$$

- If $\left(-\frac{k}{a}\right)$ is **negative** then there will be **no solutions**
- If $\left(-\frac{k}{a}\right)$ is **positive** then there will be **two values** for x h

$$\circ x - h = \pm \sqrt{-\frac{k}{a}}$$

• Solve for x

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Exam Tip

 \bigcirc

- When using the quadratic formula with awkward values or fractions you may find it easier to deal with the " $b^2 4ac$ " (**discriminant**) first
 - This can help avoid numerical and negative errors, improving accuracy

Head to <u>savemy exams.co.uk</u> for more a we some resources

2.2.4 Quadratic Inequalities

Quadratic Inequalities

What affects the inequality sign when rearranging a quadratic inequality?

- The inequality sign is **unchanged** by...
 - Adding/subtracting a term to both sides
 - Multiplying/dividing both sides by a positive term
- The inequality sign flips (< changes to >) when...
 - Multiplying/dividing both sides by a negative term

How do I solve a quadratic inequality?

- STEP 1: Rearrange the inequality into quadratic form with a positive squared term
 - $\circ ax^2 + bx + c > 0$
 - $\circ ax^2 + bx + c \ge 0$
 - $\circ ax^2 + bx + c < 0$
 - $\circ ax^2 + bx + c \le 0$
- STEP 2: Find the roots of the quadratic equation
 - Solve $ax^2 + bx + c = 0$ to get x_1 and x_2 where $x_1 < x_2$
- STEP 3: Sketch a graph of the quadratic and label the roots
 - As the squared term is positive it will be **concave up** so "U" shaped
- STEP 4: Identify the region that satisfies the inequality
 - If you want the graph to be **above the x-axis** then choose the region to be the **two intervals outside** of the two roots
 - If you want the graph to be **below the x-axis** then choose the region to be the **interval between** the two roots
 - For $ax^2 + bx + c > 0$
 - The solution is $x < x_1$ or $x > x_2$
 - For $ax^2 + bx + c \ge 0$
 - The solution is $x \le x_1$ or $x \ge x_2$
 - For $ax^2 + bx + c < 0$
 - The solution is $x_1 < x < x_2$
 - For $ax^2 + bx + c \le 0$
 - The solution is $x_1 \le x \le x_2$

How do I solve a quadratic inequality of the form $(x - h)^2 < n$ or $(x - h)^2 > n$?

- The safest way is by following the steps above
 Expand and rearrange
- A common mistake is writing $x h < \pm \sqrt{n}$ or $x h > \pm \sqrt{n}$
 - This is NOT correct!
- The correct solution to $(x h)^2 < n$ is
 - $|x-h| < \sqrt{n}$ which can be written as $-\sqrt{n} < x h < \sqrt{n}$
 - The final solution is $h \sqrt{n} < x < h + \sqrt{n}$
- The correct solution to $(x h)^2 > n$ is
 - $|x-h| > \sqrt{n}$ which can be written as $x h < -\sqrt{n}$ or $x h > \sqrt{n}$

Page 21 of 84

 ${\sf Headto} \underline{savemy exams. co.uk} for more a we some resources$

• The final solution is $x < h - \sqrt{n}$ or $x > h + \sqrt{n}$

🔿 🛛 Exam Tip

- It is easiest to sketch the graph of a quadratic when it has a positive x^2 term, so rearrange first if necessary
- Use your GDC to help select the correct region(s) for the inequality
- Some makes/models of GDC may have the ability to solve inequalities directly
 - However unconventional notation may be used to display the answer (e.g. 6 > x > 3 rather than 3 < x < 6)
 - The safest method is to **always** sketch the graph

Worked Example

Find the set of values which satisfy $3x^2 + 2x - 6 > x^2 + 4x - 2$.

Page 22 of 84

2.2.5 Discriminants

Discriminants

What is the discriminant of a quadratic function?

- The discriminant of a quadratic is denoted by the Greek letter Δ (upper case delta)
- For the quadratic function the discriminant is given by
 - $\circ \Delta = b^2 4ac$
 - This is given in the formula booklet
- The discriminant is the expression that is square rooted in the quadratic formula

How does the discriminant of a quadratic function affect its graph and roots?

- If Δ > 0 then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are two distinct values
 - The equation $ax^2 + bx + c = 0$ has two distinct real solutions
 - The graph of $y = ax^2 + bx + c$ has two distinct real roots
 - This means the graph **crosses** the *x*-axis **twice**
- If $\Delta = 0$ then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are **both zero**
 - The equation $ax^2 + bx + c = 0$ has one repeated real solution
 - The graph of $y = ax^2 + bx + c$ has **one repeated real root**
 - This means the graph touches the x-axis at exactly one point
 - This means that the **x-axis** is a **tangent** to the graph
- If $\Delta < 0$ then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are **both undefined**
 - The equation $ax^2 + bx + c = 0$ has no real solutions
 - The graph of $y = ax^2 + bx + c$ has **no real roots**
 - This means the graph never touches the x-axis
 - This means that graph is **wholly above** (or **below**) the **x-axis**

YOUR NOTES

L

Forming equations and inequalities using the discriminant

- Often at least one of the coefficients of a quadratic is unknown
 Questions usually use the letter k for the unknown constant
- You will be given a fact about the quadratic such as:
 - The number of solutions of the equation
 - The number of roots of the graph
- To find the **value or range of values** of *k*
 - Find an expression for the discriminant
 - Use $\Delta = b^2 4ac$
 - Decide whether $\Delta > 0$, $\Delta = 0$ or $\Delta < 0$
 - If the question says there are real roots but does not specify how many then use ∆ ≥ 0
 - Solve the resulting equation or inequality

) Exam Tip

- Questions will rarely use the word discriminant so it is important to recognise when its use is required
 - Look for
 - a number of roots or solutions being stated
 - whether and/or how often the graph of a quadratic function intercepts the *x*-axis
- Be careful setting up inequalities that concern "two real roots" (△ ≥ 0) as opposed to "two real distinct roots" (△ > 0)

Page 24 of 84

Head to <u>savemy exams.co.uk</u> for more a we some resources

Worked Example

A function is given by $f(x) = 2kx^2 + kx - k + 2$, where k is a constant. The graph of y = f(x) has two distinct real roots.

YOUR NOTES

a)

Show that $9k^2 - 16k > 0$.

Two distinct real roots => $\Delta > 0$ Formula booklet Discriminant $\Delta = b^2 - 4ac$ a = 2k b = k c = (-k+2) $\Delta = k^2 - 4(2k)(-k+2)$ $= k^2 + 8k^2 - 16k$ $= 9k^2 - 16k$ $\Delta > 0 => 9k^2 - 16k > 0$

b)

Hence find the set of possible values of k.

Solve the inequality

$$9k^{2}-16k=0$$

 $k(9k-16)=0$
 $k=0 \text{ or } k=\frac{16}{9}$
 $k<0 \text{ or } k>\frac{16}{9}$

2.3 Functions Toolkit

2.3.1 Language of Functions

Language of Functions

What is a mapping?

- A mapping transforms one set of values (inputs) into another set of values (outputs)
- Mappings can be:
 - One-to-one
 - Each input gets mapped to exactly one unique output
 - No two inputs are mapped to the same output
 - For example: A mapping that cubes the input
 - Many-to-one
 - Each input gets mapped to **exactly one** output
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that squares the input
 - One-to-many
 - An input can be mapped to **more than one** output
 - No two inputs are mapped to the same output
 - For example: A mapping that gives the numbers which when squared equal the input
 - Many-to-many
 - An input can be mapped to more than one output
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that gives the factors of the input

What is a function?

- A function is a mapping between two sets of numbers where **each input** gets mapped to **exactly one output**
 - The output does not need to be unique
- One-to-one and many-to-one mappings are functions
- A mapping is a function if its graph passes the vertical line test
 - Any vertical line will intersect with the graph at most once

Page 26 of 84

 ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

YOUR NOTES

⊘save my exams

What notation is used for functions?

- Functions are denoted using letters (such as f, v, g, etc)
 - A function is followed by a variable in a bracket
 - This shows the input for the function
 - The letter *f* is used most commonly for functions and will be used for the remainder of this revision note
- *f*(*x*) represents an expression for the value of the function *f* when evaluated for the variable *x*
- Function notation gets rid of the need for words which makes it **universal**
 - f = 5 when x = 2 can simply be written as f(2) = 5

What are the domain and range of a function?

- The domain of a function is the set of values that are used as inputs
- A domain should be stated with a function
 - If a domain is not stated then it is assumed the domain is all the real values which would work as inputs for the function
 - Domains are expressed in terms of the input

■ *x* ≤ 2

- The range of a function is the set of values that are given as outputs
 - The range depends on the domain
 - Ranges are expressed in terms of the output
 - $f(x) \ge 0$
- To graph a function we use the **inputs as the x-coordinates** and the **outputs as the y- coordinates**
 - f(2) = 5 corresponds to the coordinates (2, 5)
- Graphing the function can help you visualise the range
- Common sets of numbers have special symbols:
 - $\circ \ \mathbb{R}$ represents all the real numbers that can be placed on a number line
 - $x \in \mathbb{R}$ means x is a real number
 - \mathbb{Q} represents all the rational numbers $\frac{a}{b}$ where a and b are integers and $b \neq 0$
 - $\circ \mathbb{Z}$ represents all the integers (positive, negative and zero)
 - Z⁺ represents positive integers
 - \mathbb{N} represents the natural numbers (0,1,2,3...)

Page 27 of 84

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

YOUR NOTES

What are piecewise functions?

• **Piecewise functions** are defined by different functions depending on which interval the input is in

• E.g.
$$f(x) = \begin{cases} x+1 & x \le 5\\ 2x-4 & 5 < x < 10\\ x^2 & 10 \le x \le 20 \end{cases}$$

- The region for the individual functions cannot overlap
- To evaluate a piecewise function for a particular value x = k
 - \circ Find which interval includes k
 - Substitute x = k into the corresponding function
- The function may or may not be continuous at the ends of the intervals
 - In the example above the function is
 - continuous at x = 5 as 5 + 1 = 2(5) 4
 - not continuous at x = 10 as $2(10) 4 \neq 10^2$

Exam Tip

- Questions may refer to "the largest possible domain"
 - $\circ\;$ This would usually be $x\in\mathbb{R}\;$ unless \mathbb{N},\mathbb{Z} or \mathbb{Q} has already been stated
 - There are usualy some exceptions
 - e.g. square roots; $x \ge 0$ for a function involving $\sqrt{}$
 - e.g. reciprocal functions; $x \neq 2$ for a function with denominator (x = 2)

Page 28 of 84

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

2.3.2 Composite & Inverse Functions

Composite Functions

What is a composite function?

- A composite function is where a function is applied to another function
- A composite function can be denoted
 - $\circ (f \circ g)(x)$
 - $\circ fg(x)$
 - $\circ f(g(x))$
- The order matters
 - $(f \circ g)(x)$ means:
 - First apply g to x to get g(x)
 - Then apply f to the previous output to get f(g(x))
 - Always start with the function **closest to the variable**
 - $(f \circ g)(x)$ is not usually equal to $(g \circ f)(x)$

How do I find the domain and range of a composite function?

- The domain of $f \circ g$ is the set of values of x...
 - which are a **subset** of the **domain of g**
 - which maps g to a value that is in the **domain of f**
- The range of $f \circ g$ is the set of values of x...
 - which are a **subset** of the **range of f**
 - found by **applying f** to the **range of g**
- To find the $\operatorname{\mathbf{domain}}$ and $\operatorname{\mathbf{range}}$ of $\ f\circ g$
 - First find the **range of g**
 - Restrict these values to the values that are within the domain of f
 - The **domain** is the set of values that **produce the restricted range** of g
 - The **range** is the set of values that are **produced using the restricted range** of g as the domain for f
- For example: let f(x) = 2x + 1, $-5 \le x \le 5$ and $g(x) = \sqrt{x}$, $1 \le x \le 49$
 - The range of g is $1 \le g(x) \le 7$
 - **Restricting** this to fit the **domain of** f results in $1 \le g(x) \le 5$
 - The **domain** of $f \circ g$ is therefore $1 \le x \le 25$
 - These are the values of x which map to $1 \le g(x) \le 5$
 - The range of $f \circ g$ is therefore $3 \le (f \circ g)(x) \le 11$
 - These are the values which f maps $1 \le g(x) \le 5$ to

Exam Tip

- Make sure you know what your GDC is capable of with regard to functions
 - You may be able to store individual functions and find composite functions and their values for particular inputs
 - You may be able to graph composite functions directly and so deduce their domain and range from the graph
- ff(x) is not the same as [f(x)]

Page 30 of 84

b)

Write down an expression for $(f \circ g)(x)$.

First apply function closest to input

$$(f \circ g)(x) = f(g(x))$$

 $= f(3+2x)$
 $= \sqrt{3+2x+4}$
 $(f \circ g)(x) = \sqrt{7+2x}$

c)

Write down an expression for $(g \circ g)(x)$.

$$(g \circ g)(x) = g(g(x))$$

= g(3+2x)
= 3+2(3+2x)
= 3+6+4x
(g \circ g)(x) = 9+4x

Inverse Functions YOUR NOTES L What is an inverse function? • Only one-to-one functions have inverses • A function has an inverse if its graph passes the horizontal line test • Any horizontal line will intersect with the graph at most once • The identity function id maps each value to itself \circ id(x) = x • If $f \circ g$ and $g \circ f$ have the same effect as the identity function then f and g are inverses • Given a function f(x) we denote the **inverse function** as $f^{-1}(x)$ • An inverse function reverses the effect of a function • f(2) = 5 means $f^{-1}(5) = 2$ • Inverse functions are used to solve equations • The solution of f(x) = 5 is $x = f^{-1}(5)$ • A composite function made of f and f^{-1} has the same effect as the identity function • $(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$ INVERSE FUNCTIONS f(x) Ν Ρ υ $f^{-1}(x)$ 𝗭 save my exams What are the connections between a function and its inverse function? • The domain of a function becomes the range of its inverse • The range of a function becomes the domain of its inverse • The graph of $y = f^{-1}(x)$ is a **reflection** of the graph y = f(x) in the line y = x• Therefore solutions to f(x) = x or $f^{-1}(x) = x$ will also be solutions to $f(x) = f^{-1}(x)$ • There could be other solutions to $f(x) = f^{-1}(x)$ that don't lie on the line y = x*∉* save my exams

Head to savemyexams.co.uk for more awesome resources

How do I find the inverse of a function?

Page 32 of 84

- STEP 1: Swap the x and y in y = f(x)
 on If y = f⁻¹(x) then x = f(y)
- STEP 2: **Rearrange** x = f(y) to make y the subject
- Note this can be done in any order
 - Rearrange y = f(x) to make x the subject
 - Swap x and y

Exam Tip

- Remember that an inverse function is a reflection of the original function in the line *y* = *x*
 - Use your GDC to plot the function and its inverse on the same graph to visually check this
- $f^{-1}(x)$ is not the same as $\frac{1}{f(x)}$

Head to savemy exams.co.uk for more a we some resources

2.3.3 Graphing Functions

Graphing Functions

How do I graph the function y = f(x)?

- A point (a, b) lies on the graph y = f(x) if f(a) = b
- The horizontal axis is used for the domain
- The vertical axis is used for the range
- You will be able to graph some functions by hand
- For some functions you will need to use your GDC
- You might be asked to graph the **sum** or **difference** of two functions
 - Use your GDC to graph y = f(x) + g(x) or y = f(x) g(x)
 - Just type the functions into the graphing mode

What is the difference between "draw" and "sketch"?

- If asked to sketch you should:
 - Show the general shape
 - Label any key points such as the intersections with the axes
 - Label the axes
- If asked to draw you should:
 - Use a pencil and ruler
 - Draw to scale
 - Plot any points **accurately**
 - Join points with a straight line or smooth curve
 - Label any key points such as the intersections with the axes
 - Label the axes

How can my GDC help me sketch/draw a graph?

- You use your GDC to plot the graph
 - Check the scales on the graph to make sure you see the full shape
- Use your GDC to find any key points
- Use your GDC to check specific points to help you plot the graph

Head to <u>savemyexams.co.uk</u> for more awesome resources

Key Features of Graphs	YOURNOTES
What are the key features of graphs?	Ļ
 You should be familiar with the following key features and know how to use your GDC to find them Local minimums (maximums) 	
 Locar minimum symaximum s These are points where the graph has a minimum/maximum for a small region They are also called turning points 	
 This is where the graph changes its direction between upwards and downwards directions 	
 A graph can have multiple local minimums/maximums A local minimum/maximum is not necessarily the minimum/maximum of the whole graph 	
 This would be called the global minimum/maximum For quadratic graphs the minimum/maximum is called the vertex 	
Intercepts A v intercepts arowhere the graph crosses the views	
 At these points x = 0 	
 x - intercepts are where the graph crosses the x-axis At these points y = 0 These points are also called the zeros of the function or roots of the equation 	
• Symmetry	
 Some graphs have lines of symmetry A quadratic will have a vertical line of symmetry 	
 Asymptotes These are lines which the graph will get closer to but not cross These can be horizontal or vertical 	
 Exponential graphs have horizontal asymptotes Graphs of variables which vary inversely can have vertical and horizontal asymptotes 	
Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

YOURNOTES

Ļ

Exam Tip

- Most GDC makes/models will not plot/show asymptotes just from inputting a function
 - Add the asymptotes as additional graphs for your GDC to plot
 - You can then check the equations of your asymptotes visually
 - You may have to zoom in or change the viewing window options to confirm an asymptote
- Even if using your GDC to plot graphs and solve problems sketching them as part of your working is good exam technique
 - Label the key features of the graph and anything else relevant to the question on your sketch

Worked Example

Two functions are defined by

$$f(x) = x^2 - 4x - 5$$
 and $g(x) = 2 + \frac{1}{x+1}$

a)

2

Draw the graph y = f(x).

Draw means accurately Use GDC to find vertex, roots and y-intercepts Vertex = (2, -9) Roots = (-1, 0) and (5, 0) y-intercept = (0, -5)

b) Sketch the graph y = g(x).

Save My Exams

Head to <u>savemy exams.co.uk</u> for more a we some resources

ţ

SaveMyExams

Intersecting Graphs

How do I find where two graphs intersect?

- Plot both graphs on your GDC
- Use the intersect function to find the intersections
- Check if there is more than one point of intersection

⊗save myexams

How can l use graphs to solve equations?

- One method to solve equations is to use graphs
- To solve f(x) = a
 - Plot the two graphs y = f(x) and y = a on your GDC
 - Find the points of intersections
 - The x-coordinates are the solutions of the equation
- To solve f(x) = g(x)
 - Plot the two graphs y = f(x) and y = g(x) on your GDC
 - Find the points of intersections
 - The x-coordinates are the solutions of the equation
- Using graphs makes it easier to see how many solutions an equation will have

- ExamTip
 - You can use graphs to solve equations
 - Questions will not necessarily ask for a drawing/sketch or make reference to graphs
 - Use your GDC to plot the equations and find the intersections between the graphs

YOUR NOTES

Ļ

Worked Example

Two functions are defined by

 $f(x) = x^3 - x$ and $g(x) = \frac{4}{x}$.

a)

2

Sketch the graph y = f(x).

b)

Write down the number of real solutions to the equation $x^3 - x = 2$.

Identify the number of intersections between

$$y=x^3-x$$
 and $y=2$
 $y=x^3-x$ $y=2$
 $y=x^3-x$ $y=2$
1 intersection
1 solution

c)

Find the coordinates of the points where y = f(x) and y = g(x) intersect.

Page 41 of 84

SaveMyExams

SaveMyExams

2.4 Further Functions & Graphs

2.4.1 Reciprocal & Rational Functions

Reciprocal Functions & Graphs

What is the reciprocal function?

- The **reciprocal function** is defined by $f(x) = \frac{1}{x}, x \neq 0$
- Its domain is the set of all real values except 0
- Its range is the set of all real values except 0
- The reciprocal function has a **self-inverse** nature

$$\circ \quad f^{-1}(x) = f(x)$$

$$\circ (f \circ f)(x) = x$$

What are the key features of the reciprocal graph?

- The graph does not have a y-intercept
- The graph **does not have any roots**
- The graph has two asymptotes
 - A horizontal asymptote at the x-axis: y=0
 - This is the **limiting value** when the absolute value of x gets very large
 - A vertical asymptote at the y-axis: x = 0
 - This is the value that causes the **denominator to be zero**
- The graph has two axes of symmetry
 - $\circ y = x$
 - $\circ y = -x$
- The graph does not have any minimum or maximum points

Page 43 of 84

SaveMyExams

Head to <u>savemy exams.co.uk</u> for more a we some resources

Linear Rational Functions & Graphs

What is a rational function?

- A rational function is of the form $f(x) = \frac{ax+b}{cx+d}, x \neq -\frac{d}{c}$
- Its domain is the set of all real values except $-\frac{d}{c}$
- Its range is the set of all real values except $\frac{a}{c}$
- The reciprocal function is a special case of a rational function

What are the key features of rational graphs?

- The graph has a **y-intercept** at $\left(0, \frac{b}{d}\right)$ provided $d \neq 0$
- The graph has **one root** at $\left(-\frac{b}{a}, 0\right)$ provided $a \neq 0$
- The graph has two asymptotes
 - A horizontal asymptote: $y = \frac{a}{c}$
 - This is the **limiting value** when the absolute value of x gets very large
 - A **vertical** asymptote: $x = -\frac{d}{c}$
 - This is the value that causes the **denominator to be zero**
- The graph does not have any minimum or maximum points
- If you are asked to **sketch or draw** a rational graph:
 - Give the coordinates of any intercepts with the axes
 - Give the equations of the asymptotes

Page 44 of 84

Save My Exams

 ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

Exam Tip

- If you draw a horizontal line anywhere it should only intersect this type of graph once at most
- The only horizontal line that should not intersect the graph is the horizontal asymptote
 - This can be used to check your sketch in an exam

Save My Exams

 ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

YOURNOTES

Ļ

Page 46 of 84

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

2.4.2 Exponential & Logarithmic Functions

Exponential Functions & Graphs

What is an exponential function?

- An exponential function is defined by $f(x) = a^x$, a > 0
- Its domain is the set of all real values
- Its range is the set of all positive real values
- An important exponential function is $f(x) = e^x$
 - $\circ~$ Where e is the mathematical constant 2.718...
- Any exponential function can be written using e
 - $a^x = e^{x \ln a}$
 - This is given in the formula booklet

What are the key features of exponential graphs?

- The graphs have a **y-intercept** at (0, 1)
- The graphs do not have any roots
- The graphs have **a horizontal asymptote** at the x-axis: y=0
 - For *a* > 1 this is the limiting value when x tends to negative infinity
 - For **0** < *a* < **1** this is the **limiting value** when *x* tends to **positive infinity**
- The graphs do not have any minimum or maximum points

Copyright © Save My Exams. All Rights Reserved

Logarithmic Functions & Graphs

What is a logarithmic function?

- A logarithmic function is of the form $f(x) = \log_a x, x > 0$
- Its domain is the set of all positive real values
 - You can't take a log of zero or a negative number
- Its range is set of all real values
- $\log_a x$ and a^x are **inverse** functions
- An important logarithmic function is $f(x) = \ln x$
 - This is the natural logarithmic function $\ln x \equiv \log_{a} x$
 - This is the inverse of e^x
 - $\ln e^x = x$ and $e^{\ln x} = x$
- Any logarithmic function can be written using In

•
$$\log_a x = \frac{\ln x}{\ln a}$$
 using the change of base formula

What are the key features of logarithmic graphs?

- The graphs do not have a y-intercept
- The graphs have **one root** at (1, 0)
- The graphs have a **vertical asymptote** at the *y*-axis: *x* = 0
- The graphs do not have any minimum or maximum points

Save My Exams

 ${\sf Headto} \underline{savemy exams. co.uk} for more a we some resources$

YOUR NOTES

Ļ

2.4.3 Solving Equations

Solving Equations Analytically

How can I solve equations analytically where the unknown appears only once?

- These equations can be solved by rearranging
- For one-to-one functions you can just apply the inverse
 - Addition and subtraction are inverses

$$y = x + k \Leftrightarrow x = y - k$$

• Multiplication and division are inverses

•
$$y = kx \iff x = \frac{y}{k}$$

• Taking the reciprocal is a self-inverse

$$y = \frac{1}{x} \iff x = \frac{1}{y}$$

• Odd powers and roots are inverses

•
$$y = x^n \Leftrightarrow x = \sqrt[n]{y}$$

• $y = x^n \Leftrightarrow x = y^{\frac{1}{n}}$

• Exponentials and logarithms are inverses

•
$$y = a^x \Leftrightarrow x = \log_y y$$

- $y = e^x \Leftrightarrow x = \ln y$
- For **many-to-one functions** you will need to use your knowledge of the functions to find the **other solutions**
 - $\circ~$ Even powers lead to positive and negative solutions

• $y = x^n \Leftrightarrow x = \pm \sqrt[n]{y}$

• Modulus functions lead to positive and negative solutions

$$y = |x| \Leftrightarrow x = \pm \frac{1}{2}$$

- Trigonometric functions lead to infinite solutions using their symmetries
 - $y = \sin x \Leftrightarrow x = 2k\pi + \sin^{-1}y$ or $x = (1+2k)\pi \sin^{-1}y$
 - $y = \cos x \Leftrightarrow x = 2k\pi \pm \cos^{-1}y$
 - $y = \tan x \Leftrightarrow x = k\pi + \tan^{-1}y$
- Take care when you apply **many-to-one functions** to **both sides** of an equation as this can create **additional solutions** which are incorrect
 - For example: squaring both sides
 - x + 1 = 3 has one solution x = 2
 - $(x+1)^2 = 3^2$ has two solutions x = 2 and x = -4
- Always check your solutions by substituting back into the original equation

How can I solve equations analytically where the unknown appears more than once?

- Sometimes it is possible to simplify expressions to make the unknown appear only once
- Collect all terms involving x on one side and try to simplify into one term
 - For **exponents** use
 - $a^{f(x)} \times a^{g(x)} = a^{f(x)+g(x)}$

Page 51 of 84

SaveMyExams

- $\frac{a^{f(x)}}{a^{g(x)}} = a^{f(x) g(x)}$
- $(a^{f(x)})g(x) = a^{f(x) \times g(x)}$
- $a^{f(x)} = e^{f(x)\ln a}$
- For logarithms use

$$\log_a f(x) + \log_a g(x) = \log_a (f(x) \times g(x))$$

$$\log_a f(x) - \log_a g(x) = \log_a \left(\frac{f(x)}{g(x)}\right)$$

$$n\log_a f(x) = \log_a (f(x))^n$$

How can I solve equations analytically when the equation can't be simplified?

- Sometimes it is not possible to simplify equations
- Most of these equations cannot be solved analytically
- A special case that can be solved is where the equation can be transformed into a quadratic using a substitution

• These will have three terms and involve the same type of function

- Identify the suitable substitution by considering which function is a square of another
 - For example: the following can be transformed into $2y^2 + 3y 4 = 0$

•
$$2x^4 + 3x^2 - 4 = 0$$
 using $y = x^2$

•
$$2x + 3\sqrt{x} - 4 = 0$$
 using $y = \sqrt{x}$

•
$$\frac{2}{x^6} + \frac{3}{x^3} - 4 = 0$$
 using $y = \frac{1}{x^3}$

- $2e^{2x} + 3e^{x} 4 = 0$ using $v = e^{x}$
- $2 \times 25^{x} + 3 \times 5^{x} 4 = 0$ using $y = 5^{x}$
- $2^{2x+1} + 3 \times 2^{x} 4 = 0$ using $y = 2^{x}$
- $2(x^3-1)^2+3(x^3-1)-4=0$ using $y=x^3-1$
- To solve:
 - Make the substitution y = f(x)
 - Solve the quadratic equation $ay^2 + by + c = 0$ to get $y_1 \& y_2$
 - Solve $f(x) = y_1$ and $f(x) = y_2$
 - Note that some equations might have zero or several solutions

Can I divide both sides of an equation by an expression?

- When dividing by an expression you must consider whether the expression could be zero
- Dividing by an expression that could be zero could result in you losing solutions to the original equation
 - For example: (x + 1)(2x 1) = 3(x + 1)

• If you divide both sides by (x + 1) you get 2x - 1 = 3 which gives x = 2

- However x = -1 is also a solution to the original equation
- To ensure you do not lose solutions you can:
 - Split the equation into two equations
 - One where the dividing expression equals zero: x + 1 = 0
 - One where the equation has been divided by the expression: 2x 1 = 3
 - Make the equation equal zero and factorise

Page 52 of 84

🗲 Save My Exams

 ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

- (x+1)(2x-1) 3(x+1) = 0
- (x+1)(2x-1-3) = 0 which gives (x+1)(2x-4) = 0
- Set each factor equal to zero and solve: x + 1 = 0 and 2x 4 = 0

) Exam Tip

- A common mistake that students make in exams is applying functions to each term rather than to each side
 - For example: Starting with the equation $\ln x + \ln(x-1) = 5$ it would be incorrect to write $e^{\ln x} + e^{\ln(x-1)} = e^5$ or $x + (x-1) = e^5$
 - Instead it would be correct to write $e^{\ln x + \ln(x 1)} = e^{s}$ and then simplify from there

c) $e^{2x} - 4e^x - 5 = 0$.

Worked Example

2

Page 54 of 84

SaveMyExams

Head to <u>savemy exams.co.uk</u> for more a we some resources

Notice
$$e^{2x} = (e^{x})^2$$
, let $y = e^x$
 $y^2 - 4y - 5 = 0 \Rightarrow (y+1)(y-5) = 0$
 $y = -1$ or $y = 5$
Solve using $y = e^x$
 $e^x = -1$ has no solutions as $e^x > 0$
 $e^x = 5 \therefore x = \ln 5$
 $x = \ln 5$

 ${\sf Headto} \underline{savemy exams. co. uk} for more a we some resources$

Solving Equations Graphically

How can I solve equations graphically?

- To solve f(x) = g(x)
 - One method is to draw the graphs y = f(x) and y = g(x)
 - The solutions are the x-coordinates of the points of intersection
 - Another method is to **draw the graph** y = f(x) g(x) or y = g(x) f(x)
 - The solutions are the roots (zeros) of this graph
 - This method is sometimes quicker as it involves **drawing only one graph**

Why do I need to solve equations graphically?

- Some equations cannot be solved analytically
 - Polynomials of degree higher than 4

•
$$x^5 - x + 1 = 0$$

- Equations involving different types of functions
 - $e^x = x^2$

Exam Tip

- On a calculator paper you are allowed to solve equations using your GDC unless the question asks for an algebraic method
- If your answer needs to be an exact value then you might need to solve analytically to get the exact value

Page 56 of 84

2.4.4 Modelling with Functions

Modelling with Functions

What is a mathematical model?

- A **mathematical model** simplifies a real-world situation so it can be described using mathematics
 - The model can then be used to make predictions
- Assumptions about the situation are made in order to simplify the mathematics
- Models can be **refined** (improved) if further information is available or if the model is compared to real-world data

How do I set up the model?

- The question could:
 - give you the equation of the model
 - tell you about the relationship
 - It might say the relationship is linear, quadratic, etc
 - ask you to suggest a suitable model
 - Use your knowledge of each model
 - E.g. if it is compound interest then an exponential model is the most appropriate
- You may have to determine a **reasonable domain**
 - Consider real-life context
 - E.g. if dealing with hours in a day then
 - E.g. if dealing with physical quantities (such as length) then
 - Consider the **possible ranges**
 - If the outcome cannot be negative then you want to choose a domain which corresponds to a range with no negative values
 - Sketching the graph is helpful to determine a suitable domain

Which models might I need to use?

- You could be given any model and be expected to use it
- Common models include:
 - Linear
 - Arithmetic sequences
 - Linear regression
 - Quadratic
 - Projectile motion
 - The height of a cable supporting a bridge
 - Profit
 - Exponential
 - Geometric sequences
 - Exponential growth and decay
 - Compound interest
 - Logarithmic
 - Richter scale for the magnitude of earthquakes
 - Rational
 - Temperature of a cup of coffee

Page 57 of 84

YOUR NOTES

Ļ

• Trigonometric

• The depth of a tide

How do l use a model?

- You can use a model by substituting in values for the variable to **estimate outputs**
 - For example: Let h(t) be the height of a football t seconds after being kicked
 - h(3) will be an estimate for the height of the ball 3 seconds after being kicked
- Given an ${\it output}$ you can ${\it form}\, an\, equation$ with the model to ${\it estimate}\, the\, input$
 - $\circ~$ For example: Let P(n) be the profit made by selling n items
 - Solving P(n) = 100 will give you an estimate for the number of items needing to be sold to make a profit of 100
- If your variable is **time** then substituting t = 0 will give you the **initial value** according to the model
- Fully understand the **units for the variables**
 - If the units of P are measured in **thousand dollars** then P = 3 represents \$3000
- Look out for **key words** such as:
 - Initially
 - Minimum/maximum
 - Limiting value

What do I do if some of the parameters are unknown?

- A general method is to **form equations** by substituting in given values
 - You can form **multiple equations** and **solve them simultaneously** using your GDC
 - This method works for all models
- The **initial value** is the value of the function when the variable is 0
 - $\circ~$ This is ${\it normally}~{\it one}~{\it of}~{\it the}~{\it parameters}~{\it in}~{\it the}~{\it equation}~{\it of}~{\it the}~{\it model}$

Save My Exams

 ${\sf Headto} \underline{savemy exams. co. uk} for more a we some resources$

Worked Example

2

The temperature, $T^{\circ}C$, of a cup of coffee is monitored. Initially the temperature is 80°C and 5 minutes later it is 40°C. It is suggested that the temperature follows the model:

$$T(t) = Ae^{kt} + 16, t \ge 0$$

where t is the time, in minutes, after the coffee has been made.

 $64e^{5k} = 24$

 $e^{5k} = \frac{3}{8}$

 $5k = \ln \frac{3}{8}$

 $k = \frac{1}{5} \ln \frac{3}{8}$

YOUR NOTES

c)

Find the time taken for the temperature of the coffee to reach 30°C.

4D

SaveMyExams

Head to <u>savemy exams.co.uk</u> for more a we some resources

Page 60 of 84

Save My Exams

2.5 Transformations of Graphs

2.5.1 Translations of Graphs

Translations of Graphs

What are translations of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a translation:
 - $\circ~$ the graph is moved (up or down, left or right) in the xy plane
 - Its position changes
 - the shape, size, and orientation of the graph remain unchanged
- A particular translation (how far left/right, how far up/down) is specified by a translation

vector
$$\begin{pmatrix} X \\ Y \end{pmatrix}$$

- x is the horizontal displacement
 - Positive moves right
 - Negative moves left
- y is the **vertical** displacement
 - Positive moves up
 - Negative moves down

What effects do horizontal translations have on the graphs and functions?

• A horizontal translation of the graph y = f(x) by the vector $\begin{pmatrix} a \\ 0 \end{pmatrix}$ is represented by

$$\circ \quad y = f(x - a)$$

- The x-coordinates change
 - The value *a* is **subtracted** from them
- The y-coordinates stay the same
- The coordinates (x, y) become (x a, y)
- Horizontal asymptotes stay the same

Page 61 of 84

YOURNOTES

Ļ

- Vertical asymptotes change
 - x = k becomes x = k a

What effects do vertical translations have on the graphs and functions?

• A vertical translation of the graph y = f(x) by the vector $\begin{pmatrix} 0 \\ b \end{pmatrix}$ is represented by

$$\circ y - b = f(x)$$

- This is often rearranged to y = f(x) + b
- The x-coordinates stay the same
- The y-coordinates change
- The value b is **added** to them
- The coordinates (x, y) become (x, y+b)
- Horizontal asymptotes change
 - y = k becomes y = k + b
- Vertical asymptotes stay the same

 \bigcirc

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Page 65 of 84

2.5.2 Reflections of Graphs

Reflections of Graphs

What are reflections of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a **reflection**:
 - the graph is **flipped** about one of the coordinate axes
 - Its orientation changes
 - the size of the graph remains unchanged
- A particular reflection is specified by an **axis of symmetry**:
 - $\circ y=0$
 - This is the x-axis
 - $\circ \quad x = 0$
 - This is the y-axis

What effects do horizontal reflections have on the graphs and functions?

- A **horizontal reflection** of the graph y = f(x) about the y-axis is represented by
 - $\circ \quad y = f(-x)$
- The x-coordinates change
 - Their **sign** changes
- The y-coordinates stay the same
- The coordinates (x, y) become (-x, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - x = k becomes x = -k

YOUR NOTES

Page 66 of 84

• Their **sign** changes

Page 67 of 84

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

YOUR NOTES

ļ

- The coordinates (x, y) become (x, -y)
- Horizontal asymptotes change
 - y = k becomes y = -k
- Vertical asymptotes stay the same

Page 68 of 84

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Page 70 of 84

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

2.5.3 Stretches of Graphs

Stretches of Graphs

What are stretches of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a **stretch**:
 - the graph is **stretched** about one of the coordinate axes by a scale factor
 - Its size changes
 - the orientation of the graph remains unchanged
- A particular stretch is specified by a coordinate axis and a scale factor:
 - The distance between a point on the graph and the specified coordinate axis is multiplied by the constant scale factor
 - The graph is stretched in the direction which is parallel to the other coordinate axis
 - For scale factors bigger than 1
 - the points on the graph get further away from the specified coordinate axis
 - For scale factors between 0 and 1
 - the points on the graph get **closer** to the **specified coordinate axis**
 - This is also called a **compression**

What effects do horizontal stretches have on the graphs and functions?

• A **horizontal stretch** of the graph y = f(x) by a scale factor q centred about the y-axis is represented by

$$\circ \quad y = f\left(\frac{x}{q}\right)$$

- The *x*-coordinates change • They are divided by *q*
- The y-coordinates stay the same

• The coordinates
$$(x, y)$$
 become $\left(\frac{x}{a}, y\right)$

• Horizontal asymptotes stay the same

Ŀ

0

$$x = k$$
 becomes $x = \frac{\pi}{a}$

Head to <u>savemy exams.co.uk</u> for more a we some resources

SaveMyExams

YOURNOTES

Ļ

What effects do vertical stretches have on the graphs and functions?

• A vertical stretch of the graph y = f(x) by a scale factor p centred about the x-axis is represented by

$$\circ \quad \frac{y}{p} = f(x)$$

• This is often rearranged to y = pf(x)

- The x-coordinates stay the same
- The y-coordinates change
 - They are **multiplied** by p
- The coordinates (x, y) become (x, py)
- Horizontal asymptotes change
 - y = k becomes y = pk
- Vertical asymptotes stay the same
Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Exam Tip

- To get full marks in an exam make sure you use correct mathematical terminology
 - $\circ~$ For example: Stretch vertically by scale factor $\ensuremath{\sc v}_2$
 - $\circ~$ Do not use the word "compress" in your exam

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

🗲 Save My Exams

 ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

Page 75 of 84

SaveMyExams

 $Head to \underline{savemy exams. co. uk} for more a we some resources\\$

Page 76 of 84

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Save My Exams

 ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

Composite Vertical Transformations af(x)+b **YOUR NOTES** Ļ How do I deal with multiple vertical transformations? • Order matters when you have more than one vertical transformations • If you are asked to find the equation then **build up the equation** by looking at the transformations in order • A vertical stretch by scale factor *a* followed by a translation of $\begin{pmatrix} 0 \\ b \end{pmatrix}$ • Stretch: y = af(x)• Then translation: y = [af(x)] + b• Final equation: y = af(x) + b• A translation of $\begin{pmatrix} 0 \\ b \end{pmatrix}$ followed by a vertical stretch by scale factor a • Translation: y = f(x) + b• Then stretch: y = a[f(x) + b]• Final equation: y = af(x) + ab• If you are asked to determine the order • The order of vertical transformations follows the order of operations • First write the equation in the form y = af(x) + b• First stretch vertically by scale factor a • If a is negative then the reflection and stretch can be done in any order (0)

Then translate by
$$\begin{bmatrix} 0\\b \end{bmatrix}$$

Head to <u>savemyexams.co.uk</u> for more a we some resources

Page 80 of 84 © 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 81 of 84 © 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 82 of 84

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 83 of 84

Page 84 of 84 © 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers