

15.1 Energy Cycles

Question Paper

Course	DP IB Chemistry
Section	15. Energetics/Thermochemistry (HL only)
Topic	15.1 Energy Cycles
Difficulty	Hard

Time allowed: 10

Score: /5

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 1

Which of the following correctly explains the trend in enthalpy of hydration of the metal ions down Group 1?

- A. The lone pair of the oxygen atom becomes more available for bonding
- B. The attraction between the ion and the delta negative oxygen atoms in the water decreases down the group
- C. The attraction between the ion and the hydrogen ions in water decreases down the group
- D. The attraction between the ion and the delta positive hydrogen atoms in water decreases down the group

[1 mark]

Question 2

Which ionic compound has the most endothermic lattice enthalpy?

- A. SrCl₂
- B. CaO
- C. SrO
- D. CaCl₂

[1 mark]

Question 3

Which expression represents the first electron affinity of iodine?

Name of enthalpy change	Enthalpy change / kJ mol ⁻¹
Enthalpy of atomisation of calcium	+178
1st ionisation energy of calcium	+590
2nd ionisation energy of calcium	+1145
Enthalpy of atomisation of iodine	+107
Lattice energy of calcium iodide	-2074
Enthalpy of formation of calcium iodide	-534

C.
$$\frac{-534 - 178 - 590 - 1145 - (2 \times 107) - (-2074)}{2}$$

D.
$$\frac{+534 - 178 - 590 - 1145 - (2 \times 107) + 2074}{2}$$

[1 mark]

Question 4

Which equation represents the correct working to determine the lattice enthalpy of magnesium chloride, $\Delta H^{\theta}_{latt}(MgCl_2)$?

Enthalpy change	Representation
$\Delta H^{\theta}_{sol}(MgCl_2)$	X
$\Delta H^{\theta}_{hya}(Mg^{2+})$	У
$\Delta H^{\theta}_{hyd}(Cl^{-})$	Z

A. x - (y + z)

 $\mathsf{B.}\,x + (y+z)$

C.x + (y + 2z)

D. x - (y + 2z)

[1 mark]

Question 5

Which row of the table correctly represents the equations for the lattice enthalpy of substance W_2X and the ionisation energy of atom W?

	Lattice enthalpy	lonisation energy
Α.	$2W(s) + X_2(g) \rightarrow W_2X$	$W(g) \rightarrow W^+(g) + e^-$
В.	$W_2X(s) \rightarrow 2W^+(g) + X^{2-}(g)$	$W(g) \rightarrow W^{2+}(g) + 2e^{-}$
C.	$W_2X(s) \rightarrow 2W^+(g) + X^{2-}(g)$	$W(g) \rightarrow W^+(g) + e^-$
D.	$W_2X(s) \rightarrow 2W(g) + X(g)$	$W(g) \rightarrow W^{2+}(g) + 2e^{-}$

[1 mark]