

17.1 The Equilibrium Law

Question Paper

Course	DP IB Chemistry
Section	17. Equilibrium (HL only)
Topic	17.1 The Equilibrium Law
Difficulty	Hard

Time allowed: 10

Score: /5

Percentage: /100

Question 1

The Haber process is a key step in the manufacture of fertilisers:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -ve$

Which is correct about the effect of increasing temperature for this reaction?

	Effect on equilibrium position	Effect on K _c	
A.	Shifts left	No change	
В.	Shifts right	No change	
C.	Shifts right	Increase	
D.	Shifts left	Decrease	

[1 mark]

Question 2

Which equation represents a reaction where the number of moles alone can not be used to calculate the value of K_c?

A.
$$CH_3CH_2OH(aq) + CH_3COOH(aq) \rightleftharpoons CH_3CH_2OCOCH_3(aq) + H_2O(l)$$

$$B.H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

$$C.2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

$$D. N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

[1 mark]

Question 3

When 0.20 mol NO, 0.08 mol H_2 and 0.10 mol of H_2 O are placed in a 1.0 dm 3 flask, the following equilibrium is established:

$$2NO(g) + 2H_2(g) \rightleftharpoons N_2(g) + 2H_2O(g)$$

At equilibrium, the concentration of $H_2(g)$ was found to be 0.02 mol dm⁻³.

What is the correct calculation to work out K_c ?

A.
$$K_{c} = \frac{[0.14]^{2}[0.02]^{2}}{[0.03][0.16]^{2}}$$

B.
$$K_c = \frac{[0.03][0.16]^2}{[0.14]^2[0.02]^2}$$

C.
$$K_c = \frac{[0.03][0.06]^2}{[0.06]^2[0.06]^2}$$

D.
$$K_{C} = \frac{[0.06][0.16]^{2}}{[0.14]^{2}[0.04]^{2}}$$

[1 mark]

Question 4

Nitrogen dioxide can form a dimer that can also break back down again as part of a reversible reaction:

$$N_2O_4(g) \rightleftharpoons NO_2(g) \quad \Delta H = +ve$$

The reaction reaches an equilibrium at temperature T, where $K_c = 1$

What is true for a higher temperature, T_2 ?

	K _c value	ΔG ^θ value	
A.	Increases	Increases	
B.	Decreases	Increases	
C.	Decreases	Decreases	
D.	Increases	Decreases	

[1 mark]

Question 5

Which would be the correct way to plot a graph and then calculate ΔG^{θ} from experimental data of K_c and temperature values?

$$\Delta G^{\theta} = -RT \ln K$$

	y-axis	x-axis	$\Delta G^{\theta} =$
Α.	1 <i>/T</i>	In K	-Rx gradient
B.	In K	1 <i>/T</i>	-R x gradient
C.	In K	1 <i>/T</i>	R/gradient
D.	1/ <i>T</i>	In K	R/gradient

[1 mark]