

17.1 The Equilibrium Law

Question Paper

Course	DP IB Chemistry
Section	17. Equilibrium (HL only)
Торіс	17.1 The Equilibrium Law
Difficulty	Easy

Time allowed:	10
Score:	/5
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 1

Which is the correct K_c expression for the reaction between hydrogen and fluorine?

$$H_2(g) + F_2(g) \rightleftharpoons 2HF(g)$$

A. $\frac{[HF]^2}{[H_2][F_2]}$ B. $\frac{[HF]}{[H_2][F_2]}$ C. $\frac{2[HF]}{[H_2][F_2]}$

 $\mathsf{D}.\,\frac{[\mathsf{H}_2]\,[\mathsf{F}_2]}{[\mathsf{HF}]^2}$

[1mark]

Question 2

The $K_{\rm c}$ expression for the following reaction between hydrogen and iodine is shown

$$H_2(g) + I_2(g) \approx 2HI(g)$$

$$K_{\rm C} = \frac{\left[\mathrm{HI}\right]^2}{\left[\mathrm{H}_2\right]\left[\mathrm{I}_2\right]}$$

At equilibrium there were 0.234 moles of HI, 0.150 moles of H_2 and 0.025 moles of I_2.

Which is the correct K_c expression for the reaction between hydrogen and fluorine?

A.
$$\frac{[0.234]^2}{[0.15] [0.025]}$$

B.
$$\frac{[0.234]}{[0.15] [0.025]}$$

C.
$$\frac{[0.15] [0.025]}{[0.234]^2}$$

D.
$$\frac{[0.15] [0.025]}{[0.234]}$$

[1 mark]

SaveMyExams

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 3

Nitrosyl chloride decomposes into nitrogen monoxide and chlorine according to the following equation. The forward reaction is endothermic

 $2NOCI(g) \approx 2NO(g) + CI_2(g)$

Which change in condition would change the value for K_c ?

A. Decreasing the pressure

B. Adding a catalyst

C. Increasing the temperature

D. Increasing the pressure

[1 mark]

Question 4

Which of the following rows correctly describes K_c and ΔG for a reaction where the products are favoured?

	K _c	ΔG
Α.	>1	<1
В.	>1	< 0
C.	> 0	> 0
D.	> 0	>]

[1mark]

Page 3 of 4

Question 5

At 300 K, iron oxidises according to the following equation:

$$2Fe(s) + \frac{3}{2}O_2(g) \Rightarrow Fe_2O_3(s)$$

The standard Gibbs free energy change for this reaction is -743.05 kJ mol⁻¹.

The quantitative relationship between the standard Gibbs free energy change, temperature and the equilibrium constant is:

 $\Delta G = -RT \ln K$

Which expression is a correct step towards calculating the value of the equilibrium constant? ($R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)

A.
$$\ln K = \frac{8.31 \times 573}{-743.05 \times 10^3}$$

B. $\ln K = \frac{8.31 \times 300}{-743.05 \times 10^3}$
C. $\ln K = \frac{-743.05}{8.31 \times 300}$
D. $\ln K = \frac{-743.05 \times 10^3}{8.31 \times 300}$

[1mark]

Page 4 of 4