

7.1 Discrete Energy & Radioactivity

Question Paper

Course	DP IB Physics
Section	7. Atomic, Nuclear & Particle Physics
Торіс	7.1 Discrete Energy & Radioactivity
Difficulty	Hard

Time allowed:	50
Score:	/40
Percentage:	/100

SaveMyExams

Head to savemy exams.co.uk for more a we some resources

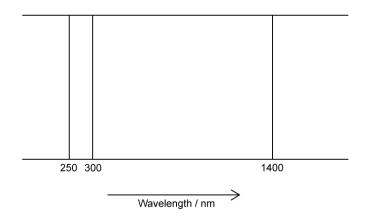
Question la

Transitions between three energy levels in a particular atom give rise to three spectral lines. In decreasing magnitudes, these are f_1 , f_2 and f_3 .

The equation which relates f_1 , f_2 and f_3 is:

$$f_1 = f_2 + f_3$$

(a)


Explain, including through the use of a sketch, how this equation relates f_1 , f_2 and f_3 .

[3]

[3 marks]

Question 1b

A different atom has a complete line emission spectra with a ground state energy of -10.0 eV. is:

(b)

Sketch and label a diagram of the possible energy levels for the atomic line spectra shown.

[5 marks]

[5 marks]

Question 1c

(c) Explain the significance of an electron at an energy level of O eV.

[3] **[3 marks]**

Question 1d

(d)

(i)

Explain the statement 'the first excitation energy of the hydrogen atom is $10.2 \, \text{eV}'$

(ii)

The ground state of hydrogen is -13.6 eV. Calculate the speed of the slowest electron that could cause this excitation of a hydrogen atom.

[2]

[1]

Question 2a

A radioactive nucleus ${}^{229}_{85}X$ undergoes a beta-minus decay followed by an alpha decay to form a daughter nucleus ${}^{A}_{Z}Y$.

(a)

Write a decay equation for this interaction and hence determine the values of A and Z.

[2]

[2 marks]

Question 2b

Thorium, ${}^{90}_{232}$ Th decays to an isotope of Radium (Ra) through a series of transformations. The particles emitted in successive transformations are:

(b)

Determine the resulting nuclide after these successive transformations.

[3]

SaveMyExams

Head to savemy exams.co.uk for more a we some resources

Question 2c

Through a combination of successive alpha and beta decays, the isotope of any original nucleus can be formed.

(c)

Explain the simplest sequence of alpha and beta decays required to do this

[3]

[3 marks]

Question 2d

A nucleus of Bohrium X_YBh decays to Mendelevium $^{255}_{101}Md$ by a sequence of three alpha particle emissions.

(d)

Determine the number of neutrons in a nucleus of ${}^{X}_{v}Bh$

[2]

[2 marks]

Question 3a

The table shows some of the isotopes of phosphorus and, where they are unstable, the type of decay.

lsotope	²⁹ P ₁₅ P	³⁰ P 15	³¹ P 15	³² P 15	³³ ₁₅ P
Type of decay	β^+	β^+	stable		β^-

(a)

 $State whether the isotope {}^{32}_{15}P is stable or not. If not, determine, with a reason, the type of decay it experiences.$

[3]

Question 3b

The isotope of phosphorus $^{30}_{15}P$ decays into an isotope of silicon, $^{A}_{Z}Si.$

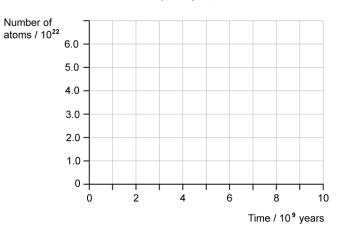
(b)

Write a decay equation for this decay, finding the values of A and Z, and explain why each emission product occurs.

[3]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4a


The radioactive isotope uranium-238 decays in a decay series to the stable lead-206.

The half-life of ${}^{238}_{92}$ U is 4.5×10^9 years, which is much larger than all the other half-lives of the decays in the series.

A rock sample, when formed originally, contained 6.0 × 10^{22} atoms of $^{238}_{92}$ U and no $^{206}_{82}$ Pb atoms. At any given time, most of the atoms are either $^{238}_{92}$ U or $^{206}_{82}$ Pb with a negligible number of atoms in other forms in the decay series.

(a)

Sketch on the axes below the variation of number of $^{238}_{92}$ U atoms and the number of $^{206}_{82}$ Pb atoms in the rock sample as they vary over a period of 1.0 × 10¹⁰ years from its formation. Label your graphs U and Pb.

[2]

[2 marks]

Question 4b

A certain time, t, after its formation, the sample contained twice as many $^{238}_{92}$ U atoms as $^{206}_{82}$ Pb atoms.

(b) Show that the number of $^{238}_{92}$ U atoms in the rock sample at time t was 4.0 × 10²².

[2]

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4c

The ratio of the number of lead nuclei N_{Pb} to the number of uranium nuclei N_{U} at some time t is given by:

$$\frac{N_{Pb}}{N_{U}} = e^{\lambda t} - 1$$

 λ is the decay constant and has a value of 1.54 \times 10 $^{-10}$ years.

(c)

Calculate the time taken (in years) for there to be twice as many $^{238}_{92}$ U atoms as $^{206}_{82}$ Pb atoms.

[2]

[2 marks]

Question 4d

Lead-214 is an unstable isotope of lead-206. It decays by emitting a β^- particle to form bismuth-214 (Bi)

Bismuth is also unstable and has two decay modes:

- Emitting an α particle to form thallium-210 (Tl) + energy
- + Emitting a β particle to form polonium-214 (Po) + energy

(d)

Write decay equations for the decay chain of lead-214 to thallium-210 and to polonium-214. Comment on the nature of the energy released.

[4]

[4 marks]

Page 9 of 9