

16.1 Rate Expression & Reaction Mechanism

Question Paper

Course	DP IB Chemistry
Section	16. Chemical Kinetics (HL only)
Торіс	16.1 Rate Expression & Reaction Mechanism
Difficulty	Medium

Time allowed:	50
Score:	/40
Percentage:	/100

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question la

a)

For the reaction below, consider the following experimental data.

$X(aq) + Y(aq) \rightarrow Z(aq)$

Experiment	Initial [X] / mol dm ⁻³	Initial [Y] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.030	0.040	4.0 x 10 ⁻⁴
2	0.045	0.040	6.0 x 10 ⁻⁴
3	0.060	0.120	2.4 × 10 ⁻³

Deduce the order of reaction with respect to X.

[2 marks]

[2 marks]

Question 1b

b)

Deduce the order of the reaction with respect to Y.

Question 1c

c)

Write the rate expression for the reaction between X and Y. $\,$

[1 mark]

Question 1d

d)

Determine the rate constant, k, correct to three significant figures and state its units, using data from Experiment 2.

Experiment	Initial [X] / mol dm ⁻³	Initial [Y] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.030	0.040	4.0 x 10 ⁻⁴
2	0.045	0.040	6.0 x 10 ⁻⁴
3	0.060	0.120	2.4 × 10 ⁻³

[3 marks]

Question 2a

a)

Explain why the reaction represented below is a redox reaction.

 $2ClO_2(aq) + 2NaOH(aq) \rightarrow NaClO_3(aq) + NaClO_2(aq) + H_2O(I)$

[2 marks]

Question 2b

b)

For the reaction below, consider the following experimental data.

$2CIO_2(aq) + 2OH^-(aq) \rightarrow CIO_3^-(aq) + CIO_2^-(aq) + H_2O(I)$

Experiment	Initial [C/O ₂] / mol dm ⁻³	Initial [OH ⁻] ∕mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.85	1.70	9.30 x 10 ⁻⁵
2	1.70	1.70	3.72 x 10 ⁻⁴
3	1.70	0.85	1.86 x 10 ⁻⁴

Deduce the rate expression.

[3 marks]

Question 2c

C)

Determine the rate constant, k, and state its units, using data from Experiment 3.

[3 marks]

Question 2d

[2 marks]

Question 3a

a)

Sketch a graph to show how the rate constant, k, varies with temperature.

[1mark]

Question 3b

b)

The following mechanism is proposed for the reaction where ethanal dimerises in dilute alkaline solution to form 3–hydroxybutanal:

Step 1: $CH_3CHO + :OH^- \rightarrow :CH_2CHO + H_2O$ Step 2: $CH_3CHO + :CH_2CHO \rightarrow CH_3CH(O:^-)CH_2CHO$ Step 3: $CH_3CH(O:^-)CH_2CHO + H_2O \rightarrow CH_3CH(OH)CH_2CHO + :OH^-$

 $Classify OH^-, CH_2 CHO and CH_3 CH(O;^-) CH_2 CHO as reactant, product, catalyst or intermediate, based on the proposed mechanism.$

[3 marks]

Question 3c

c)

Using the following information about the proposed mechanism, deduce the rate expression.

[1mark]

Page 5 of 10

Time (s)

Question 3d

d)

Calculate the initial rate of reaction for experiment 2, if measured under the same conditions.

Experiment	Initial [CH ₃ CHO] / mol dm ⁻³	Initial [OH⁻] ∕mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.25	0.20	4.2×10 ⁻²
2	0.25	0.30	

Question 3e

e)

State the effect, if any, increasing the concentration of a reactant would have on the value of the rate constant, k.

[1mark]

[1mark]

Question 4a

a)

Nitrogen dioxide and carbon monoxide react according to the following equation.

Concentration of reactant (mol dm⁻³)

 $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

Using the following graph, what is the order with respect to NO₂?

[1mark]

Question 4b

b)

The rate expression for the reaction of nitrogen dioxide and carbon monoxide at T < 227 ^OC is:

Rate = $k [NO_2]^2$

Sketch a labelled graph of concentration against time for carbon monoxide.

[2 marks]

Question 4c

C)

A student proposed the following single step mechanism for the reaction of nitrogen dioxide and carbon monoxide.

 $NO_2 + CO \rightarrow NO + CO_2$ slow

Rate = $k [NO_2]^2$

Justify whether the student's proposed mechanism is correct.

[2 marks]

Question 4d

d)

 $\label{eq:constraint} Another student proposed the following mechanism for the reaction of nitrogen dioxide and carbon monoxide.$

Step 1: $NO_2 + NO_2 \rightarrow NO + NO_3$ Step 2: $NO_3 + 2CO \rightarrow NO + 2CO_2$

Rate = $k [NO_2]^2$

Explain which of the student's proposed mechanism steps is the rate determining step.

[1 mark]

Question 5a

a)

Nitrogen(II) oxide is oxidised according to the following equation.

 $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$

The following mechanism is proposed for the two-step oxidation of nitrogen(II) oxide.

Step 1: $NO(g) + NO(g) \rightarrow N_2O_2(g)$ Step 2: $N_2O_2(g) + O_2(g) \rightarrow 2NO_2(g)$

The potential energy profile for this two-step reaction is shown.

Explain which step is the rate determining step.

[1 mark]

Question 5b

b)

Energy profile diagrams give evidence for or against a proposed mechanism or proposed rate expression.

i)

Explain why the rate expression for the oxidation of nitrogen(II) oxide is **not** rate = $k [N_2O_2] [O_2]$.

ii)

Deduce the rate expression for the oxidation of nitrogen(II) oxide.

[3 marks]

Question 5c

c)

Explain why the following reaction between iodide ions and peroxodisulfate ions has a high activation energy.

 $S_2O_8^{2-}(aq) + 2I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_2(aq)$

[2 marks]

Question 5d

d)

Sketch the potential energy diagram for the reaction of iodide ions with peroxodisulfate ions catalysed by iron(II) ions according to the following mechanism.

[2 marks]

Question 5e

e)

Deduce the rate expression for the reaction of iodide ions with peroxodisulfate ions catalysed by iron(II) ions according to the following mechanism.

$$2Fe^{2+}(aq) + S_2O_8^{2-}(aq) \rightarrow 2Fe^{3+}(aq) + 2SO_4^{2-}(aq)$$
 slow
 $2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$ fast

[1mark]

Page 9 of 10

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 10 of 10