

1.9 Further Complex Numbers

Question Paper

Course	DP IB Maths
Section	1. Number & Algebra
Торіс	1.9 Further Complex Numbers
Difficulty	Hard

Time allowed:	110
Score:	/84
Percentage:	/100

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question la

Consider the equation $z^2 + pz - 2p - 1 = 0$, where $z \in \mathbb{C}$, $p \in \mathbb{R}$.

(a)

Find the value of p for which one of the two distinct roots is $z_1 = 2 + \sqrt{3}i$.

[4 marks]

Question 1b

(b) Find the range of values of p for which the equation has two distinct, real roots.

[4 marks]

Question 2a

Consider the complex number $\omega = -1 + 4i$.

(a)

Show that ω is a root of the cubic equation

 $z^3 + 5z^2 + 23z + 51 = 0$

[4 marks]

Question 2b

(b) Find the other two roots of the cubic equation in part (a).

[4 marks]

Question 3

Consider $z = \operatorname{cis} \theta$ where $z \in \mathbb{C}, z \neq 1$.

Show that
$$\operatorname{Re}\left(\frac{1+z}{1-z}\right) = 0$$
.

[5 marks]

Question 4a

Consider the equation $(z-2)^2 = i, z \in \mathbb{C}$.

a)

(i)

Verify that $\omega_1 = 2 + e^{i\frac{\pi}{4}}$ is a root of this equation.

(ii)

Find the second root of the equation, expressing your answer in the form $\omega_2 = a + e^{i\theta}$ where $a \in \mathbb{R}$ and $\theta > 0$.

[5 marks]

Question 4b

The roots ω_1 and ω_2 are represented by the points A and B respectively on an Argand diagram.

(b) Find AB.

[3 marks]

Page 4 of 12

Question 5

Consider the equation $z^4 + (1 - 4i)z^2 - 4i = 0$, where $z \in \mathbb{C}$.

Find the four distinct roots of the equation, giving your answers in the form a + bi where $a, b \in \mathbb{R}$.

[8 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 6a

Consider the complex numbers $w_1 = \frac{z_1}{z_2}$, $z_1 = \frac{\sqrt{2}e^{-\frac{\pi}{3}i}}{3}$ and $z_2 = 2 - 2\sqrt{3}i$.

(a) Express (i) z_1 in the form a + bi(ii) z_2 in the form $r \operatorname{cis} \theta$, where r > 0 and $-\pi < \theta < \pi$.

[3 marks]

Question 6b

(b) Find the exact value of W_1 .

[2 marks]

Question 6c

(c) Find $w_2 = z_1 z_2$, giving your answer in the form $r \operatorname{cis} \theta$, where r > 0 and $-\pi < \theta < \pi$.

[2 marks]

Question 6d

(d)

Without drawing an Argand diagram, describe the geometrical relationship between z_1 and z_2 .

[1mark]

Question 7a

$$z = \frac{\sqrt{3}}{2}\mathbf{i} - \frac{1}{2}$$

(a) Find all the powers z^n .

[5 marks]

Question 7b

(b)

Find the area of the shape made by the powers Z^n when plotted on an Argand diagram.

[3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 8a

Let $z = \cos \theta + i \sin \theta$.

(a) Write down the value of zz^* .

[2 marks]

Question 8b

Let $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$.

(b) Prove the results (i) $\left|\frac{z_1}{z_2}\right| = \left|\frac{z_1}{z_2}\right|$ (ii) $\arg \frac{z_1}{z_2} = \arg z_1 - \arg z_2$

[5 marks]

Question 8c

(c)

Using the results from part (b), describe fully the geometrical interpretation of dividing z_1 by z_2 .

[1 mark]

Question 9a

(b)

Sketch $\omega_{\rm l}^{},\,\omega_{\rm 2}^{}$ and $\omega_{\rm 3}^{}$ on the Argand diagram below.

[3 marks]

Question 9b

 $\omega_{1}^{},\,\omega_{2}^{}$ and $\omega_{3}^{}$ represent the vertices of a triangle.

(c) Find the area of the triangle.

[4 marks]

Question 10a

The complex numbers $z_1 = a$, $z_2 = 3 - 2i$ and z_3 are roots of the cubic equation $z^3 + pz^2 + qz - 26 = 0$, where a, p, $q \in \mathbb{R}$.

(a) Find the values of *a*, *p* and *q*.

[5 marks]

Question 10b

(b) Express z_1 , z_2 and z_3 in the form $re^{i\theta}$, where r > 0 and $0 < \theta \le 2\pi$.

[3 marks]

Page 10 of 12

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 11

Let $f(z) = z^4 + az^3 + 6z^2 + bz + 65$, where a and b are real constants.

Given that z = 3 + 2i is a root of the equation f(z) = 0, show the roots f(z) = 0 on the Argand diagram below.

[8 marks]

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 12 of 12