

5.9 Advanced Integration

Question Paper

Course	DP IB Maths
Section	5. Calculus
Торіс	5.9 Advanced Integration
Difficulty	Medium

Time allowed:	130
Score:	/101
Percentage:	/100

Question 1a

Find the following indefinite integrals:

(a) $\int 4 \sec^2 2x dx$

[2 marks]

Question 1b

(b) $\int \sec \frac{x}{3} \tan \frac{x}{3} \, \mathrm{d}x$

Question lc

[2 marks]

Question 2a

Find the following indefinite integrals:

(a) $\int (\ln 3) 3^x \mathrm{d}x$

[2 marks]

Question 2b

(b)
$$\int \frac{12}{9+x^2} \, \mathrm{d}x$$

Question 2c

(c)
$$\int \frac{3}{5\sqrt{16-x^2}} dx$$

[2 marks]

[2 marks]

Question 2d

(d)

Using a sketch, briefly describe the family of graphs corresponding to all the possible specific solutions to the integral in part (a).

Question 3a

(a) Show that

$$\frac{5}{x^2+9x+14} = \frac{A}{x+2} + \frac{B}{x+7}$$

where A and B are constants to be found.

[2 marks]

Question 3b

(b) Hence, find the indefinite integral

$$\int \frac{5}{x^2 + 9x + 14} \,\mathrm{d}x$$

using laws of logarithms to simplify your answer as far as possible.

[4 marks]

Question 3c

(c) Show that

$$\int_{-1}^{5} \frac{5}{x^2 + 9x + 14} \, \mathrm{d}x = \ln 7 - \ln 2$$

[4 marks]

Question 4a

(a) Use the substitution u = x - 3 to find the following indefinite integral:

$$\int x\sqrt{x-3}\,\mathrm{d}x.$$

[4 marks]

Question 4b

(b)

Hence find the value of the definite integral

$$\int_{4}^{7} x \sqrt{x-3} \, dx$$

(i) by evaluating the definite integral entirely in terms of *X*

(ii)

by converting the integral limits to appropriate values of u and evaluating the definite integral entirely in terms of u.

Verify that the two methods give the same result for the value of the integral.

[4 marks]

Question 5a

(a)

Show that $x^2 - 10x + 29$ may be written in the form $p + (x - q)^2$, where p and q are constants to be determined.

[2 marks]

Question 5b

(b)

Using your results from part (a) along with the substitution u = x - q, show that

$$\int \frac{1}{x^2 - 10x + 29} \, \mathrm{d}x = \frac{1}{2} \arctan\left(\frac{x - 5}{2}\right) + c \, .$$

[5 marks]

Question 5c

(c) Find the exact value of the definite integral

$$\int_{5}^{7} \frac{1}{x^2 - 10x + 29} \, dx$$

Question 6

Use the substitution $u = 1 + \sin^3 x$ to show that

$$\int_0^{\frac{\pi}{2}} \sin^2 x \cos x \sqrt{1 + \sin^3 x} \, \mathrm{d}x = \frac{2}{9} \left(2\sqrt{2} - 1 \right).$$

[6 marks]

Question 7a

(a) Use integration by parts to find the indefinite integral

$$\int x e^{2x} dx.$$

[4 marks]

 $\int_0^3 x \mathrm{e}^{2x} \,\mathrm{d}x.$

Question 7b

(b) Hence find the exact value of the definite integral

[3 marks]

Question 7c

(c) Use technology to evaluate the integral in part (b), and compare this to the exact value you found.

[1mark]

Question 8a

(a) Use integration by parts twice to show that

$$\int 32x^2 e^{4x} dx = e^{4x} (px^2 + qx + r) + c$$

where p, q and r are constants to be found, and where c is a constant of integration.

[6 marks]

Question 8b

Let f be a function defined for all $x \in \mathbb{R}$. Consider the graph of y = f(x).

(b) Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 32x^2\mathrm{e}^{4x}$$

and that the graph passes through the point $\left(\frac{1}{4}, \frac{e+7}{2}\right)$, find an expression for f(x).

Question 9

Let f be the function defined by $f(x) = \csc 2x \cot 2x$, $0 < x < \frac{\pi}{2}$.

The diagram below shows a part of the graph of the curve y = f(x). The shaded region is the region bounded by the curve, the positive x-axis and the line $x = \frac{\pi}{8}$.

Find the exact area of the shaded region.

[6 marks]

Question 10a

The following diagram shows a part of the graph of the curve $y = \frac{1}{4}(x-2)^2$. The shaded region is the region enclosed by the graph and the positive x- and y-axes.

(a)

(i)

Find the coordinates of the points where the graph intersects the coordinate axes.

(ii)

For the part of the curve that forms the boundary of the shaded region, show that $x = 2 - 2\sqrt{y}$.

[3 marks]

Question 10b

(b) Find the area of the shaded region

(i)

by calculating it as an area between the curve and the x-axis.

(ii)

by calculating it as an area between the curve and the y-axis.

[6 marks]

Question 10c

(c)

Find the volume of the solid formed when the shaded region is rotated 2π radians about the x-axis.

[5 marks]

Question 10d

(d)

Find the volume of the solid formed when the shaded region is rotated 2π radians about the y-axis.

[5 marks]

Page 13 of 15

Question 11a

The diagram below shows the cross-section of a bowl that a company is planning to begin producing.

As indicated on the diagram, one of the sides of the bowl in the cross-section may be described by the curve $y = \sqrt{x^2 - 36}$, where units for x and y are centimetres. The cross-section is entirely symmetrical about the y-axis. The flat circular bottom of the bowl has a diameter of 12 cm, and the vertical depth of the bowl is 6 cm. For purposes of answering this question, the thickness of the bottom and sides of the bowl may be regarded as negligible.

(a)

Find the exact coordinates of the point marked \boldsymbol{A} on the diagram.

Question 11b

(b) Show that the capacity of the bowl in cm³ is given by

 $\pi \int_0^b (y^2 + 36) \mathrm{d}y$

where b is a constant to be determined.

[4 marks]

Question 11c

(c) Hence find the capacity of the bowl.

[2 marks]